Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology

We prove the additive version of the conjecture proposed by Ginzburg and Kaledin. This conjecture states that if X/G is an orbifold modeled on a quotient of a smooth affine symplectic variety X (over C) by a finite group G\subset Aut(X) and A is a G-stable quantum algebra of functions on X then the graded vector space HH(A^G) of the Hochschild cohomology of the algebra A^G of invariants is isomorphic to the graded vector space H_{CR}(X/G)((h)) of the Chen-Ruan (stringy) cohomology of the orbifold X/G.

[1]  I. Cherednik Double Affine Hecke Algebras , 2005 .

[2]  Nora Ganter Orbifold genera, product formulas and power operations , 2004, math/0407021.

[3]  P. Etingof Cherednik and Hecke algebras of varieties with a finite group action , 2004, math/0406499.

[4]  V. Dolgushev Hochschild Cohomology versus De Rham Cohomology without Formality Theorems , 2004, math/0405177.

[5]  V. Dolgushev A formality theorem for Hochschild chains , 2004, math/0402248.

[6]  Y. Ruan,et al.  A New Cohomology Theory of Orbifold , 2000, math/0004129.

[7]  P. Etingof,et al.  Quantization, orbifold cohomology, and Cherednik algebras , 2003, math/0311005.

[8]  M. Szczesny,et al.  CHIRAL DE RHAM COMPLEX AND ORBIFOLDS , 2003, math/0307181.

[9]  Orbifold Cohomology Quantization, Orbifold Cohomology, and Cherednik Algebras , 2003 .

[10]  V. Ginzburg,et al.  Poisson deformations of symplectic quotient singularities , 2002, math/0212279.

[11]  Jacques Alev,et al.  Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini☆☆☆ , 2000 .

[12]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[13]  Michel Van den Bergh,et al.  A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .

[14]  H. Verlinde,et al.  UvA-DARE ( Digital Academic Repository ) Elliptic genera of symmetric products and second quantized strings , 1997 .

[15]  P. Xu Fedosov *-Products and Quantum Momentum Maps , 1996, q-alg/9608006.

[16]  B. Fedosov Deformation Quantization and Index Theory , 1995 .

[17]  B. Tsygan,et al.  Algebraic index theorem , 1995 .

[18]  John D. S. Jones,et al.  The cyclic homology of crossed product algebras. II. Topological algebras , 1995 .

[19]  B. Fedosov A simple geometrical construction of deformation quantization , 1994 .

[20]  John D. S. Jones,et al.  The cyclic homology of crossed product algebras , 1993 .

[21]  Ivan Cherednik,et al.  Double affine hecke algebras, knizhnik-zamolodchikov equations, and macdonald’s operators , 1992 .

[22]  M. Lorenz On the homology of graded algebras , 1992 .

[23]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[24]  B. Feigin,et al.  Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras , 1987 .

[25]  J. Brylinski Cyclic homology and equivariant theories , 1987 .

[26]  T. Stafford,et al.  Simple Noetherian rings , 1979 .

[27]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[28]  F. Bayen,et al.  Deformation theory and quantization. II. Physical applications , 1978 .

[29]  F. Berezin General concept of quantization , 1975 .

[30]  B. Kostant,et al.  Differential Forms on Regular Affine Algebras , 1962 .