Role of aspartate ammonia-lyase in Pasteurella multocida

[1]  Chengping Lu,et al.  Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35 , 2019, Applied Microbiology and Biotechnology.

[2]  Q. Luo,et al.  Protection of chickens against fowl cholera by supernatant proteins of Pasteurella multocida cultured in an iron-restricted medium , 2019, Avian pathology : journal of the W.V.P.A.

[3]  W. Vongsangnak,et al.  Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida. , 2019, Microbial pathogenesis.

[4]  Pascale B. Beauregard,et al.  Iron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation , 2018, Applied and Environmental Microbiology.

[5]  J. Philips,et al.  A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor , 2018, Applied and Environmental Microbiology.

[6]  N. V. Kirienko,et al.  Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa , 2018, Journal of Microbiology.

[7]  Euna Oh,et al.  Enhanced Biofilm Formation by Ferrous and Ferric Iron Through Oxidative Stress in Campylobacter jejuni , 2018, Front. Microbiol..

[8]  Luyan Z. Ma,et al.  [Iron uptake and biofilm formation in Pseudomonas aeruginosa]. , 2017, Sheng wu gong cheng xue bao = Chinese journal of biotechnology.

[9]  Weitian Li,et al.  The Role of Necroptosis, Apoptosis, and Inflammation in Fowl Cholera–Associated Liver Injury in a Chicken Model , 2017, Avian Diseases.

[10]  D. Xing,et al.  Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells , 2017, Front. Microbiol..

[11]  R. Jia,et al.  Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. , 2017, Veterinary microbiology.

[12]  Z. Rao,et al.  Improvement of the ammonia assimilation for enhancing l-arginine production of Corynebacterium crenatum , 2017, Journal of Industrial Microbiology & Biotechnology.

[13]  Carlos García,et al.  Iron is a signal for Stenotrophomonas maltophilia biofilm formation, oxidative stress response, OMPs expression, and virulence , 2015, Front. Microbiol..

[14]  C. Dozois,et al.  Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. , 2015, Veterinary microbiology.

[15]  A. Karsi,et al.  Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction , 2015, PloS one.

[16]  Qinghai Hu,et al.  The role of TonB-dependent receptor TbdR1 in Riemerella anatipestifer in iron acquisition and virulence. , 2013, Veterinary microbiology.

[17]  R. Takors,et al.  Evolution of pyruvate kinase‐deficient Escherichia coli mutants enables glycerol‐based cell growth and succinate production , 2013, Journal of applied microbiology.

[18]  J. Boyce,et al.  Pasteurella multocida Heddleston Serovar 3 and 4 Strains Share a Common Lipopolysaccharide Biosynthesis Locus but Display both Inter- and Intrastrain Lipopolysaccharide Heterogeneity , 2013, Journal of bacteriology.

[19]  Michael D. Engstrom,et al.  Anaerobic Respiration Using a Complete Oxidative TCA Cycle Drives Multicellular Swarming in Proteus mirabilis , 2012, mBio.

[20]  Jiasen Liu,et al.  [Construction and characterization of aroA deletion mutant of Pasteurella multocida strain C51-17]. , 2012, Wei sheng wu xue bao = Acta microbiologica Sinica.

[21]  Shiyun Chen,et al.  Characterization of an aspartate‐dependent acid survival system in Yersinia pseudotuberculosis , 2010, FEBS letters.

[22]  B. Pearson,et al.  Amino acid‐dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen‐limited conditions and identification of AspB (Cj0762), essential for growth on glutamate , 2008, Molecular microbiology.

[23]  M. Jacques,et al.  Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions , 2007, BMC Genomics.

[24]  Ben Adler,et al.  Pasteurella multocida pathogenesis: 125 years after Pasteur. , 2006, FEMS microbiology letters.

[25]  S. Payne,et al.  Iron and Fur Regulation in Vibrio cholerae and the Role of Fur in Virulence , 2005, Infection and Immunity.

[26]  M. Trost,et al.  Enzymes Involved in Anaerobic Respiration Appear To Play a Role in Actinobacillus pleuropneumoniae Virulence , 2005, Infection and Immunity.

[27]  P. Barrow,et al.  Genes responsible for anaerobic fumarate and arginine metabolism are involved in growth suppression in Salmonella enterica serovar Typhimurium in vitro, without influencing colonisation inhibition in the chicken in vivo. , 2003, Veterinary microbiology.

[28]  S. Agarwal,et al.  The Gonococcal Fur Regulon: Identification of Additional Genes Involved in Major Catabolic, Recombination, and Secretory Pathways , 2002, Journal of bacteriology.

[29]  Takuichi Sato,et al.  Metabolic Pathways for Cytotoxic End Product Formation from Glutamate- and Aspartate-Containing Peptides byPorphyromonas gingivalis , 2000, Journal of bacteriology.

[30]  A. Anderson,et al.  Transcriptional regulation by iron of genes encoding iron- and manganese-superoxide dismutases from Pseudomonas putida. , 1999, Gene.

[31]  S. Park,et al.  Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products , 1995, Journal of bacteriology.

[32]  J. J. van Hellemond,et al.  Expression and functional properties of fumarate reductase. , 1994, The Biochemical journal.

[33]  M. J. van der Werf,et al.  The potential of lyases for the industrial production of optically active compounds. , 1994, Trends in biotechnology.

[34]  S. Calderwood,et al.  Role of iron in regulation of virulence genes , 1993, Clinical Microbiology Reviews.

[35]  V. Rastogi,et al.  Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti , 1991, Journal of bacteriology.

[36]  R. Viola,et al.  L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. , 1988, Biochemistry.

[37]  J. S. Miles,et al.  Structural and functional relationships between fumarase and aspartase. Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12. , 1986, The Biochemical journal.

[38]  M. Spencer,et al.  Location of the Aspartase Gene (aspA) on the linkage map of Escherichia coli K12. , 1976, Journal of general microbiology.

[39]  V. Swarupa,et al.  Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus , 2017, 3 Biotech.

[40]  J. Boyce,et al.  Pasteurella multocida , 2012, Current Topics in Microbiology and Immunology.

[41]  B. Pearson,et al.  Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. , 2005, Microbiology.

[42]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..