A Multidimensional Finite Mixture Structural Equation Model for Nonignorable Missing Responses to Test Items

We propose a structural equation model, which reduces to a multidimensional latent class item response theory model, for the analysis of binary item responses with nonignorable missingness. The missingness mechanism is driven by 2 sets of latent variables: one describing the propensity to respond and the other referred to the abilities measured by the test items. These latent variables are assumed to have a discrete distribution, so as to reduce the number of parametric assumptions regarding the latent structure of the model. Individual covariates can also be included through a multinomial logistic parameterization for the distribution of the latent variables. Given the discrete nature of this distribution, the proposed model is efficiently estimated by the expectation–maximization algorithm. A simulation study is performed to evaluate the finite-sample properties of the parameter estimates. Moreover, an application is illustrated with data coming from a student entry test for the admission to some university courses.

[1]  Anna Gerber,et al.  Item Response Theory Principles And Applications , 2016 .

[2]  A. Punzo,et al.  Rasch analysis for binary data with nonignorable nonresponses , 2013 .

[3]  M. Davier,et al.  Modeling Nonignorable Missing Data with Item Response Theory (IRT). Research Report. ETS RR-10-11. , 2010 .

[4]  Henry E. Brady,et al.  The Oxford Handbook of Political Methodology , 2010 .

[5]  M. Reckase Multidimensional Item Response Theory , 2009 .

[6]  Ofer Harel,et al.  Partial and latent ignorability in missing-data problems , 2009 .

[7]  Matthias von Davier,et al.  A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.

[8]  D. Hibbs On analyzing the effects of policy interventions : Box-Jenkins and Box-Tiao vs. structural equation models , 1977 .

[9]  Anton K. Formann Mixture analysis of multivariate categorical data with covariates and missing entries , 2007, Comput. Stat. Data Anal..

[10]  Francesco Bartolucci,et al.  A class of multidimensional IRT models for testing unidimensionality and clustering items , 2007 .

[11]  Francesco Bartolucci,et al.  A Class of Latent Marginal Models for Capture–Recapture Data With Continuous Covariates , 2006 .

[12]  José G. Dias,et al.  Model Selection for the Binary Latent Class Model: A Monte Carlo Simulation , 2006, Data Science and Classification.

[13]  C. Glas,et al.  Modelling non‐ignorable missing‐data mechanisms with item response theory models , 2005 .

[14]  Rebecca Holman,et al.  Modelling non-ignorable missing-data mechanisms with item response theory models. , 2005, The British journal of mathematical and statistical psychology.

[15]  J. Vermunt,et al.  Latent Gold 4.0 User's Guide , 2005 .

[16]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[17]  Yuhong Yang Can the Strengths of AIC and BIC Be Shared , 2005 .

[18]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[19]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[20]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[21]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[22]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[23]  I. Moustaki,et al.  A one dimension latent trait model to infer attitude from nonresponse for nominal data , 2000 .

[24]  Martin Knott,et al.  Weighting for item non‐response in attitude scales by using latent variable models with covariates , 2000 .

[25]  Gerhard Arminger,et al.  Mixtures of conditional mean- and covariance-structure models , 1999 .

[26]  Eric T. Bradlow,et al.  Item Response Theory Models Applied to Data Allowing Examinee Choice , 1998 .

[27]  Han L. J. van der Maas,et al.  Fitting multivariage normal finite mixtures subject to structural equation modeling , 1998 .

[28]  Scott L. Zeger,et al.  Latent Variable Regression for Multiple Discrete Outcomes , 1997 .

[29]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[30]  Kamel Jedidi,et al.  STEMM: A General Finite Mixture Structural Equation Model , 1997 .

[31]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[32]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[33]  M. Kenward,et al.  Informative dropout in longitudinal data analysis (with discussion) , 1994 .

[34]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[35]  D. Francis An introduction to structural equation models. , 1988, Journal of clinical and experimental neuropsychology.

[36]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[37]  R. Hambleton,et al.  Item Response Theory , 1984, The History of Educational Measurement.

[38]  Frederic M. Lord,et al.  Maximum likelihood estimation of item response parameters when some responses are omitted , 1983 .

[39]  F. Krauss Latent Structure Analysis , 1980 .

[40]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[43]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[44]  A. Goldberger STRUCTURAL EQUATION METHODS IN THE SOCIAL SCIENCES , 1972 .

[45]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[46]  Neil Henry Latent structure analysis , 1969 .

[47]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .