Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn 7 O 12

The noncollinear cycloidal magnetic order breaks the inversion symmetry in CaMn$_{7}$O$_{12}$, generating one of the largest spin-orbit driven ferroelectric polarizations measured to date. In this Letter, the microscopic origin of the polarization, including its direction, charge density redistribution, magnetic exchange interactions, and its coupling to the spin helicity, is explored via first principles calculations. The Berry phase computed polarization exhibits almost pure electronic behavior, as the Mn displacements are negligible, $\approx$~0.7~m\textrm{\AA}. The polarization magnitude and direction are both determined by the Mn spin current, where the \emph{p}-\emph{d} orbital mixing is driven by the inequivalent exchange interactions within the \emph{B}-site Mn cycloidal spiral chains along each Cartesian direction. We employ the generalized spin-current model with Heisenberg-exchange Dzyaloshinskii-Moriya interaction energetics to provide insight into the underlying physics of this spin-driven polarization. Persistent electronic polarization induced by helical spin order in nearly inversion-symmetric ionic crystal lattices suggests opportunities for ultrafast magnetoelectric response.

[1]  Y. Tokura,et al.  Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. , 2004, Physical review letters.

[2]  A. Rappe,et al.  Electronic transition above room temperature in CaMn7O12 films , 2015 .

[3]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[4]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[5]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[6]  S. Cheong,et al.  Ferroelectricity in an ising chain magnet. , 2008, Physical review letters.

[7]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[8]  C. Martin,et al.  Magneto-orbital helices as a route to coupling magnetism and ferroelectricity in multiferroic CaMn7O12 , 2012, Nature Communications.

[9]  A. Mougin,et al.  Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. , 2009, Physical review letters.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[12]  H. Nakamura,et al.  Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet , 2008 .

[13]  N. Spaldin,et al.  J dependence in the LSDA plus U treatment of noncollinear magnets , 2010 .

[14]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[15]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[16]  D. Vanderbilt,et al.  First principles study of improper ferroelectricity in TbMnO3. , 2008, Physical review letters.

[17]  A. B. Harris,et al.  Evidence for large electric polarization from collinear magnetism in TmMnO3 , 2009, 0901.0787.

[18]  Naoto Nagaosa,et al.  Multiferroics of spin origin , 2014, Reports on progress in physics. Physical Society.

[19]  J. Dai,et al.  The preferred orientation of Mn3 spins in magnetic multiferroic CaMn7O12 , 2015 .

[20]  Y. Tokura,et al.  Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. , 2006, Physical review letters.

[21]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[22]  C. Martin,et al.  Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite , 2016, 1604.07747.

[23]  Y. Tokura,et al.  Magnetic-field-induced ferroelectric state in DyFeO3. , 2008, Physical review letters.

[24]  T. Mellan,et al.  The importance of anisotropic Coulomb interaction in LaMnO3 , 2015, 1503.08871.

[25]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[26]  E. Dagotto,et al.  Multiferroic properties of CaMn(7)O(12) , 2011, 1101.2276.

[27]  P. Barone,et al.  Ferroelectricity due to orbital ordering in E-type undoped rare-earth manganites. , 2010, Physical review letters.

[28]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[29]  D. Khomskii,et al.  Classifying multiferroics: Mechanisms and effects , 2009 .

[30]  A. Cano,et al.  Non-collinear magnetism in multiferroic perovskites , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Timothy Clarke,et al.  Physics I.2 , 2018 .

[32]  M. Islam,et al.  Importance of anisotropic Coulomb interactions and exchange to the band gap and antiferromagnetism of β-MnO 2 from DFT+U , 2012, 1211.5518.

[33]  T. Arima Ferroelectricity Induced by Proper-Screw Type Magnetic Order(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2007 .

[34]  Renata M. Wentzcovitch,et al.  First-principles study of electronic and structural properties of CuO , 2011, 1107.4399.

[35]  Andrew G. Glen,et al.  APPL , 2001 .

[36]  T. Kimura,et al.  Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet Cu Fe O 2 , 2005, cond-mat/0510701.

[37]  Y. Tokura,et al.  Comprehensive study of the ferroelectricity induced by the spin-dependentd-phybridization mechanism in Ba2XGe2O7(X= Mn, Co, and Cu) , 2012 .

[38]  Z. Pchelkina,et al.  Orbital ordering and magnetic interactions in BiMnO3 , 2008, 0805.0182.

[39]  J. Jasinski,et al.  Particle and crystallite size effects on the modulated structure of multiferroic CaMn7O12 , 2013 .

[40]  J. van den Brink,et al.  Multiferroicity due to charge ordering , 2008, 0803.2964.

[41]  Designed nonlocal pseudopotentials for enhanced transferability , 1997, cond-mat/9711163.

[42]  Zhifeng Ren,et al.  Multiferroicity: the coupling between magnetic and polarization orders , 2009, 0908.0662.

[43]  J. Dai Dependence of improper ferroelectricity on the preferred orientation of Mn3 spins in CaMn 7 O 12 , 2017 .

[44]  Handong Sun,et al.  Magnetic properties and origins of ferroelectric polarization in multiferroic CaMn7O12 , 2013 .

[45]  Diomedes Saldana-Greco,et al.  Improved pseudopotential transferability for magnetic and electronic properties of binary manganese oxides from DFT +U +J calculations , 2016 .

[46]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[47]  Y. S. Lee,et al.  Dzyaloshinskii-Moriya interaction and spin reorientation transition in the frustrated kagome lattice antiferromagnet , 2011 .

[48]  C. L. Zhang,et al.  Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. , 2005, Physical review letters.

[49]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[50]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[51]  Y. Tokura,et al.  Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A=Cu, Ag, Li, or Na). , 2008, Physical review letters.

[52]  Nicola A. Hill,et al.  Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials , 2001 .

[53]  M. Hervieu,et al.  MAGNETOTRANSPORT PHENOMENA IN A(MN3-XCUX)MN4O12 (A = CA, TB, TM) PEROVSKITES , 1998 .

[54]  C. Martin,et al.  Giant Improper Ferroelectricity in the Ferroaxial Magnet CaMn 7 O 12 , 2011, 1110.4585.

[55]  I. Solovyev Origin of multiferroicity in MnWO 4 , 2012, 1210.7879.

[56]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[57]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  H. Xiang,et al.  Spin-orbit coupling and ion displacements in multiferroic TbMnO3. , 2008, Physical review letters.

[59]  T. Arima,et al.  Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field. , 2006, Physical review letters.

[60]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[61]  M. Pederson,et al.  IMPORTANCE OF NONLINEAR CORE CORRECTIONS FOR DENSITY-FUNCTIONAL BASED PSEUDOPOTENTIAL CALCULATIONS , 1999 .

[62]  K. Delaney,et al.  Superexchange-driven magnetoelectricity in magnetic vortices. , 2008, Physical review letters.

[63]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[64]  E. Dagotto,et al.  Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. , 2007, Physical review letters.

[65]  A. Aharony,et al.  Magnetically driven ferroelectric order in Ni3V2O8. , 2005, Physical review letters.

[66]  W. Sławiński,et al.  Relative orientation of the magnetic moments in modulated multiferroic CaMn7O12 , 2013 .

[67]  M Jaime,et al.  Direct transition from a disordered to a multiferroic phase on a triangular lattice. , 2007, Physical review letters.

[68]  F. Giustino,et al.  First-principles study of structurally modulated multiferroic CaMn 7 O 12 , 2015, 1502.03351.

[69]  E. Dagotto,et al.  Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. , 2006, Physical review letters.

[70]  M. Fiebig Revival of the magnetoelectric effect , 2005 .