Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties.

Ligand exchange is a much-used method to increase the conductivity of colloidal quantum-dot films by replacing long insulating ligands on quantum-dot surfaces with shorter ones. Here we show that while some ligands indeed replace the original ones as expected, others may be used to controllably remove the native ligands and induce epitaxial necking of specific crystal facets. In particular, we demonstrate that amines strip lead oleate from the (100) surfaces of PbSe quantum dots. This leads to necking of QDs and results in cubic superlattices of epitaxially connected QDs. The number of amine head-groups as well as the carbon chain length of linear diamines is shown to control the extent of necking. DFT calculations show that removal of Pb(oleate)2 from (100) surfaces is exothermic for all amines, but the driving force increases as monoamines < long diamines < short diamines < tetramines. The neck formation and cubic ordering results in a higher optical absorption cross section and higher charge carrier mobilities, thereby showing that the use of the proper multidentate amine molecules is a powerful tool to create supercrystals of epitaxially connected PbSe QDs with controlled electronic coupling.

[1]  P. Kooyman,et al.  Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. , 2010, ACS nano.

[2]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[3]  Malcolm L. H. Green,et al.  Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry , 2014 .

[4]  L. Siebbeles,et al.  Photoconductivity enhancement in multilayers of CdSe and CdTe quantum dots. , 2011, ACS nano.

[5]  J. Schins,et al.  Disorder strongly enhances Auger recombination in conductive quantum-dot solids , 2013, Nature Communications.

[6]  Ahmad R. Kirmani,et al.  The donor-supply electrode enhances performance in colloidal quantum dot solar cells. , 2013, ACS nano.

[7]  S. Kinge,et al.  Photoconductivity of PbSe quantum-dot solids: dependence on ligand anchor group and length. , 2012, ACS nano.

[8]  Zeger Hens,et al.  Surface chemistry of colloidal PbSe nanocrystals. , 2008, Journal of the American Chemical Society.

[9]  T. Hanrath,et al.  Confined-but-connected quantum solids via controlled ligand displacement. , 2013, Nano letters.

[10]  T. Savenije,et al.  The Yield and Mobility of Charge Carriers in Smooth and Nanoporous TiO2 Films , 1999 .

[11]  H. V. D. van der Zant,et al.  Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids. , 2011, Nature nanotechnology.

[12]  N. Kopidakis,et al.  Revealing the Dynamics of Charge Carriers in Polymer:Fullerene Blends Using Photoinduced Time-Resolved Microwave Conductivity , 2013 .

[13]  Philippe Guyot-Sionnest,et al.  n-Type Conducting CdSe Nanocrystal Solids , 2003, Science.

[14]  Malcolm L. H. Green A new approach to the formal classification of covalent compounds of the elements , 1995 .

[15]  L. D. A. Siebbeles,et al.  Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices , 2014, Science.

[16]  C. Delerue,et al.  Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry , 2014, 1502.04886.

[17]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[18]  I. Moreels,et al.  Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. , 2012, Journal of the American Chemical Society.

[19]  Michael Dolg,et al.  Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .

[20]  D. Muller,et al.  Surfactant ligand removal and rational fabrication of inorganically connected quantum dots. , 2011, Nano letters.

[21]  C. Delerue,et al.  Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two , 2013 .

[22]  Matt Law,et al.  Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. , 2010, Nano letters.

[23]  J. Schins,et al.  Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. , 2011, Nano letters.

[24]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[25]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[26]  M. Dijkstra,et al.  Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. , 2013, Nano letters.

[27]  Oleksandr Voznyy,et al.  Measuring charge carrier diffusion in coupled colloidal quantum dot solids. , 2013, ACS nano.

[28]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[31]  J. Tomm,et al.  The dielectric function of PbS quantum dots in a glass matrix , 2012 .

[32]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[33]  T. Savenije,et al.  Highly Photoconductive CdSe Quantum-Dot Films: Influence of Capping Molecules and Film Preparation Procedure , 2010 .

[34]  Z. Hens,et al.  Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling. , 2013, ACS nano.

[35]  C. Kittel Introduction to solid state physics , 1954 .

[36]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[37]  S. Adachi,et al.  OPTICAL PROPERTIES OF PBSE , 1995 .

[38]  L. Wirtz,et al.  Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Krönig analysis of the absorbance spectrum , 2010 .

[39]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[40]  Richard G Hennig,et al.  Predicting nanocrystal shape through consideration of surface-ligand interactions. , 2012, ACS nano.

[41]  S. Kinge,et al.  High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films , 2013, Nature Communications.

[42]  Dmitri V Talapin,et al.  Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands. , 2011, Journal of the American Chemical Society.

[43]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[44]  A. Verkleij,et al.  Quantitative structural analysis of binary nanocrystal superlattices by electron tomography. , 2009, Nano letters.

[45]  M. Sierka,et al.  Turbomole , 2014 .

[46]  C. A. Nelson,et al.  Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids , 2011 .

[47]  Charles-Antoine Guérin,et al.  Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy , 2005 .

[48]  A. Sihvola Two Main Avenues Leading To the Maxwell Garnett Mixing Rule , 2001 .