Semiconductor nanowires: from self-organization to patterned growth.

The synthesis of semiconductor nanowires has been studied intensively worldwide for a wide spectrum of materials. Such low-dimensional nanostructures are not only interesting for fundamental research due to their unique structural and physical properties relative to their bulk counterparts, but also offer fascinating potential for future technological applications. Deeper understanding and sufficient control of the growth of nanowires are central to the current research interest. This Review discusses the various growth processes, with a focus on the vapor-liquid-solid process, which offers an opportunity for the control of spatial positioning of nanowires. Strategies for position-controlled and nanopatterned growth of nanowire arrays are reviewed and demonstrated by selected examples as well as discussed in terms of larger-scale realization and future prospects. Issues on building up nanowire-based electronic and photonic devices are addressed at the end of the Review, accompanied by a brief survey of recent progress demonstrated so far on the laboratory level.

[1]  Bin Xiang,et al.  Efficient field emission from ZnO nanoneedle arrays , 2003 .

[2]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[3]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[4]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[5]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[6]  Bodo Fuhrmann,et al.  Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. , 2005, Nano letters.

[7]  Chongwu Zhou,et al.  Transition Metal Oxide Core-Shell Nanowires: Generic Synthesis and Transport Studies , 2004 .

[8]  Charles M Lieber,et al.  Semiconductor nanowire heterostructures , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Jing Wang,et al.  Ga2O3 nanowires prepared by physical evaporation , 1999 .

[10]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .

[11]  I. Lin,et al.  Characterization and Field‐Emission Properties of Needle‐like Zinc Oxide Nanowires Grown Vertically on Conductive Zinc Oxide Films , 2003 .

[12]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[13]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[14]  W. Park,et al.  Electroluminescence in n‐ZnO Nanorod Arrays Vertically Grown on p‐GaN , 2004 .

[15]  Qiguang Li,et al.  Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. , 2005, Nano letters.

[16]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[17]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[18]  C. Thelander,et al.  Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures , 2002 .

[19]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[20]  Q. Li,et al.  Bismuth telluride (Bi2Te3) nanowires synthesized by cyclic electrodeposition/ stripping coupled with step edge decoration , 2004 .

[21]  Jae-Gwan Park,et al.  Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer , 2005 .

[22]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[23]  Bernard Nysten,et al.  Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy , 2004 .

[24]  Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures , 2004 .

[25]  Y. Bando,et al.  Excellent field-emission properties of P-doped GaN nanowires. , 2005, The journal of physical chemistry. B.

[26]  U. Gösele,et al.  Reduced critical thickness for relaxing heteroepitaxial films on compliant substrates , 2003 .

[27]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[28]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[29]  Neil C. Simmons,et al.  Directed spatial organization of zinc oxide nanorods. , 2004, Nano letters.

[30]  Shui-Tong Lee,et al.  Analysis of Silicon Nanowires Grown by Combining SiO Evaporation with the VLS Mechanism , 2004 .

[31]  Stephen J. Fonash,et al.  From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling Grow-in-place approach , 2004 .

[32]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[33]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[34]  Zhong Lin Wang,et al.  Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. , 2004, Nano letters.

[35]  H. Gassen,et al.  A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane , 1971 .

[36]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[37]  J. Tersoff,et al.  Sawtooth faceting in silicon nanowires. , 2005, Physical review letters.

[38]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[39]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[40]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[41]  J. F. Conley,et al.  Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer , 2005 .

[42]  Jing Wang,et al.  A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation , 2004, cond-mat/0403739.

[43]  Jurriaan Huskens,et al.  Patterned Self‐Assembled Monolayers on Silicon Oxide Prepared by Nanoimprint Lithography and Their Applications in Nanofabrication , 2005 .

[44]  Kornelius Nielsch,et al.  A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. , 2005, Angewandte Chemie.

[45]  Shu-wei Li,et al.  Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires , 2005 .

[46]  D. West,et al.  Room‐Temperature Lasing Observed from ZnO Nanocolumns Grown by Aqueous Solution Deposition , 2002 .

[47]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[48]  R. Penner,et al.  Molybdenum nanowires by electrodeposition. , 2000, Science.

[49]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[50]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[51]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[52]  Lars Samuelson,et al.  Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth , 2003 .

[53]  M. Reiche,et al.  Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp , 2003 .

[54]  Teri W. Odom,et al.  Directed Growth of Ordered Arrays of Small‐Diameter ZnO Nanowires , 2004 .

[55]  Shui-Tong Lee,et al.  Electronic structure and optical properties of silicon nanowires: A study using x-ray excited optical luminescence and x-ray emission spectroscopy , 2004 .

[56]  Sune R. Bahn,et al.  Mechanical properties and formation mechanisms of a wire of single gold atoms , 2001, cond-mat/0105277.

[57]  Ralf B. Wehrspohn,et al.  Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio , 2003 .

[58]  Elizabeth C. Dickey,et al.  Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method , 2001 .

[59]  Pengfei Wu,et al.  Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes , 2003 .

[60]  Yong Ding,et al.  Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces , 2004 .

[61]  Frank Syrowatka,et al.  Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography , 2006 .

[62]  Xuesong Shi,et al.  Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates , 2000 .

[63]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[64]  M. Chou,et al.  Quantum confinement and electronic properties of silicon nanowires. , 2004, Physical review letters.

[65]  Lars Samuelson,et al.  Size-, shape-, and position-controlled GaAs nano-whiskers , 2001 .

[66]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[67]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[68]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[69]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[70]  Y. Qian,et al.  Template-free Growth of Vertically Aligned CdS Nanowire Array Exhibiting Good Field Emission Property , 2004 .

[71]  Yoshio Watanabe,et al.  Metalorganic vapor-phase epitaxial growth and characterization of vertical InP nanowires , 2003 .

[72]  Shui-Tong Lee,et al.  Lasing in ZnS nanowires grown on anodic aluminum oxide templates , 2004 .

[73]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[74]  M. Zacharias,et al.  Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence , 2004 .

[75]  Kang L. Wang,et al.  Growth of Si whiskers on Au/Si(1 1 1) substrate by gas source molecular beam epitaxy (MBE) , 1999 .

[76]  Walter Riess,et al.  Realization of a silicon nanowire vertical surround-gate field-effect transistor. , 2006, Small.

[77]  L. Zhang,et al.  A physical evaporation synthetic route to large-scale GaN nanowires and their dielectric properties , 2003 .

[78]  J. Choy,et al.  Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room‐Temperature Ultraviolet Laser , 2003 .

[79]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[80]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[81]  Zhifeng Ren,et al.  Formation of Super Arrays of Periodic Nanoparticles and Aligned ZnO Nanorods - Simulation and Experiments , 2004 .

[82]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[83]  Gehan A. J. Amaratunga,et al.  Self-Aligned, Gated Arrays of Individual Nanotube and Nanowire Emitters , 2004 .

[84]  B. Korgel,et al.  Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. , 2002, Journal of the American Chemical Society.

[85]  Di Chen,et al.  Preparation of CdS Single‐Crystal Nanowires by Electrochemically Induced Deposition , 2000 .

[86]  Lars Samuelson,et al.  Self-forming nanoscale devices , 2003 .

[87]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[88]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[89]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[90]  Takashi Fukui,et al.  Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays , 2005 .

[91]  Volker Schmidt,et al.  Diameter-dependent growth direction of epitaxial silicon nanowires. , 2005, Nano letters.

[92]  Lars Montelius,et al.  Nanowire Arrays Defined by Nanoimprint Lithography , 2004 .

[93]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[94]  Erik David Spoerke,et al.  Sequential Nucleation and Growth of Complex Nanostructured Films , 2006 .

[95]  Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire , 2004 .

[96]  Takayuki Takahagi,et al.  Two-dimensional nanowire array formation on Si substrate using self-organized nanoholes of anodically oxidized aluminum , 1999 .

[97]  R. Adelung,et al.  Strain-controlled growth of nanowires within thin-film cracks , 2004, Nature materials.

[98]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[99]  Won Bo Lee,et al.  Metal Membranes with Hierarchically Organized Nanotube Arrays , 2005 .

[100]  R. Williams,et al.  Chemically vapor deposited Si nanowires nucleated by self-assembled Ti islands on patterned and unpatterned Si substrates , 2002 .

[101]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[102]  X. Chen,et al.  Patterning Colloidal Crystals by Lift‐up Soft Lithography , 2004 .

[103]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[104]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[105]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[106]  Yong Ding,et al.  Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts , 2004 .

[107]  Surojit Chattopadhyay,et al.  Field emission from quasi-aligned aluminum nitride nanotips , 2005 .

[108]  J. Tour,et al.  Magnetite (Fe3O4) Core−Shell Nanowires: Synthesis and Magnetoresistance , 2004 .

[109]  Margit Zacharias,et al.  Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach , 2005 .

[110]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[111]  T. Fukui,et al.  Realization of conductive InAs nanotubes based on lattice-mismatched InP∕InAs core-shell nanowires , 2006 .

[112]  E. A. Cavalcanti-Adam,et al.  Block copolymer micelle nanolithography on non-conductive substrates , 2004 .

[113]  T. Kamins,et al.  In Situ p‐n Junctions and Gated Devices in Titanium-Silicide Nucleated Si Nanowires , 2005 .

[114]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[115]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[116]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[117]  Takashi Fukui,et al.  Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy , 2005 .

[118]  Mark D. Vaudin,et al.  Horizontal growth and in situ assembly of oriented zinc oxide nanowires , 2004 .

[119]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[120]  Jianyu Liang,et al.  Periodic array of uniform ZnO nanorods by second-order self-assembly , 2004 .

[121]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[122]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.