Controlling edge dynamics in complex networks

Surprisingly little is known about how network dynamics might be controlled, despite extensive research into how they behave. A study of the controllability of network edge dynamics reveals that it differs from that of nodal dynamics, and that real-world networks are easier to control than their random counterparts.

[1]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[2]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[3]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Barabasi,et al.  Percolation in directed scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  K. Reinschke,et al.  Digraph characterization of structural controllability for linear descriptor systems , 1997 .

[6]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[7]  Adilson E Motter,et al.  Local structure of directed networks. , 2007, Physical review letters.

[8]  J. G. Skellam The frequency distribution of the difference between two Poisson variates belonging to different populations. , 1946, Journal of the Royal Statistical Society. Series A.

[9]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[10]  Marián Boguñá,et al.  Decoding the structure of the WWW: A comparative analysis of Web crawls , 2007, TWEB.

[11]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[12]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[13]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[14]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[15]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[16]  Jure Leskovec,et al.  Signed networks in social media , 2010, CHI.

[17]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[18]  B. Bollobás The evolution of random graphs , 1984 .

[19]  F. Stokman,et al.  Evolution of sociology freshmen into a friendship network , 2003 .

[20]  K. Norlen 1 EVA : Extraction , Visualization and Analysis of the Telecommunications and Media Ownership Network , 2002 .

[21]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[22]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[23]  Kazuo Murota,et al.  Systems Analysis by Graphs and Matroids , 1987 .

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Ian T. Foster,et al.  Mapping the Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems and Implications for System Design , 2002, ArXiv.

[27]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[28]  Lionel Tabourier,et al.  Directedness of Information Flow in Mobile Phone Communication Networks , 2011, PloS one.

[29]  Azadeh Iranmehr,et al.  Trust Management for Semantic Web , 2009, 2009 Second International Conference on Computer and Electrical Engineering.

[30]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[31]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Andre Levchenko,et al.  Dynamic Properties of Network Motifs Contribute to Biological Network Organization , 2005, PLoS biology.

[33]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[35]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[36]  R. Shields,et al.  Structural controliability of multi-input linear systems , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[37]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[38]  R. Carter 11 – IT and society , 1991 .

[39]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[40]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[42]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[43]  Rizal Setya Perdana What is Twitter , 2013 .

[44]  T. Vicsek,et al.  Directed network modules , 2007, physics/0703248.

[45]  Noah J. Cowan,et al.  Nodal dynamics determine the controllability of complex networks , 2011 .

[46]  J. Pearson,et al.  Structural controllability of multiinput linear systems , 1976 .

[47]  M. Marsili,et al.  Loops of any size and Hamilton cycles in random scale-free networks , 2005, cond-mat/0502552.

[48]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[49]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[50]  Enys Mones,et al.  Hierarchy Measure for Complex Networks , 2012, PloS one.

[51]  A. Lombardi,et al.  Controllability analysis of networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  T. Vicsek,et al.  Hierarchical group dynamics in pigeon flocks , 2010, Nature.

[53]  T. Nepusz,et al.  Fuzzy communities and the concept of bridgeness in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Kathleen M. Carley,et al.  Patterns and dynamics of users' behavior and interaction: Network analysis of an online community , 2009, J. Assoc. Inf. Sci. Technol..

[56]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[57]  L. Aravind,et al.  Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. , 2006, Journal of molecular biology.

[58]  Robert R. Christian,et al.  Organizing and understanding a winter's seagrass foodweb network through effective trophic levels , 1999 .

[59]  László Kocsis,et al.  Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis , 2006, The European journal of neuroscience.

[60]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[61]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[62]  Ching-tai Lin Structural controllability , 1974 .

[63]  Andrew Parker,et al.  The Hidden Power of Social Networks: Understanding How Work Really Gets Done in Organizations , 2004 .

[64]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[65]  Stefan Bornholdt,et al.  Dynamics of social networks , 2003, Complex..

[66]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[67]  William S. Yamamoto,et al.  AY's Neuroanatomy of C. elegans for Computation , 1992 .