A polynomial-time construction of self-orthogonal codes and applications to quantum error correction
暂无分享,去创建一个
[1] H. Stichtenoth,et al. A low complexity algorithm for the construction of algebraic geometric codes better than the Gilbert-Varshamov bound , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[2] Andrew M. Steane. Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.
[3] Tom Høholdt,et al. An explicit construction of a sequence of codes attaining the Tsfasman-Vladut-Zink bound: The first steps , 1997, IEEE Trans. Inf. Theory.
[4] H. Fujita. Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006, quant-ph/0608063.
[5] V. D. Goppa. Codes on Algebraic Curves , 1981 .
[6] M. Hamada. Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction , 2008, IEEE Transactions on Information Theory.
[7] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[8] Chaoping Xing,et al. Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.
[9] Henning Stichtenoth,et al. Transitive and self-dual codes attaining the Tsfasman-Vla/spl breve/dut$80-Zink bound , 2006, IEEE Transactions on Information Theory.
[10] Fujita Hachiro. Several Classes of Concatenated Quantum Codes: Constructions and Bounds , 2006 .
[11] Kenneth W. Shum,et al. A low-complexity construction of algebraic geometric codes better than the gilbert-varshamov bound , 2000 .
[12] H. Stichtenoth,et al. On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .
[13] Alexei E. Ashikhmin,et al. Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.
[14] S. Litsyn,et al. Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.
[15] Henning Stichtenoth. Transitive and Self-dual Codes Attaining the Tsfasman-Vladut-Zink Bound , 2005 .
[16] M. Hamada. Information rates achievable with algebraic codes on quantum discrete memoryless channels , 2005, IEEE Transactions on Information Theory.
[17] N. J. A. Sloane,et al. Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.
[18] Some Artin–Schreier Towers Are Easy , 2005 .
[19] Hao Chen,et al. Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound , 2001, IEEE Trans. Inf. Theory.
[20] Ryutaroh Matsumoto,et al. Improvement of Ashikhmin-Litsyn-Tsfasman bound for quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[21] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[22] Douglas A. Leonard,et al. Finding the defining functions for one-point algebraic-geometry codes , 2001, IEEE Trans. Inf. Theory.
[23] R. Cleve,et al. Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.