Report of the IAU/IAG Joint Working Group on Theory of Earth Rotation and Validation

This report focuses on some selected scientific outcomes of the activities developed by the IAU/IAG Joint Working Group on Theory of Earth rotation and validation along the term 2015–2019. It is based on its end-of-term report to the IAG Commission 3 published in the Travaux de l’IAG 2015–2019, which in its turn updates previous reports to the IAG and IAU, particularly the triennial report 2015–2018 to the IAU Commission A2, and the medium term report to the IAG Commission 3 (2015–2017). The content of the report has served as a basis for the IAG General Assembly to adopt Resolution 5 on Improvement of Earth rotation theories and models.

[1]  Nicole Capitaine,et al.  Expressions for IAU 2000 precession quantities , 2003 .

[2]  M. Thomas,et al.  Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere , 2018, Journal of Geodesy.

[3]  Harald Schuh,et al.  Application of time-variable process noise in terrestrial reference frames determined from VLBI data , 2018 .

[4]  B. Chao,et al.  Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum , 1996 .

[5]  I. Fukumori,et al.  Ocean angular momentum from a recent global state estimate, with assessment of uncertainties , 2018, Geophysical Journal International.

[6]  Thomas A. Herring,et al.  Modeling of nutation‐precession: Very long baseline interferometry results , 2002 .

[7]  J. Ferrándiz,et al.  CONTRIBUTIONS OF THE ELASTICITY TO THE PRECESSION OF A TWO-LAYER EARTH MODEL , 2017 .

[9]  J. Ferrándiz,et al.  Consistency Problems in the Improvement of the IAU Precession–Nutation Theories: Effects of the Dynamical Ellipticity Differences , 2016, Pure and Applied Geophysics.

[10]  M. Schindelegger,et al.  Diurnal atmosphere‐ocean signals in Earth's rotation rate and a possible modulation through ENSO , 2017 .

[11]  R. Dill,et al.  Seasonal variations in global mean sea level and consequences on the excitation of length-of-day changes , 2019, Geophysical Journal International.

[12]  Z. Malkin Free core nutation and geomagnetic jerks , 2013 .

[13]  H. Schuh,et al.  On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames , 2017, Journal of Geodesy.

[14]  Jianli Chen,et al.  Revised atmospheric excitation function series related to Earth's variable rotation under consideration of surface topography , 2006 .

[15]  Walter Munk,et al.  The rotation of the earth , 1960 .

[16]  Ji Chen,et al.  Using MODIS EVI to detect vegetation damage caused by the 2008 ice and snow storms in south China , 2010 .

[17]  Chengli Huang,et al.  A generalized theory of the figure of the Earth: formulae , 2018, Journal of Geodesy.

[18]  J. Ferrándiz,et al.  Application of first-order canonical perturbation method with dissipative Hori-like kernel , 2017 .

[19]  Harald Schuh,et al.  Determination of a terrestrial reference frame via Kalman filtering of very long baseline interferometry data , 2016, Journal of Geodesy.

[20]  Chengli Huang,et al.  A generalized theory of the figure of the Earth: on the global dynamical flattening , 2018, Journal of Geodesy.

[21]  A. Brzeziński,et al.  Testing impact of the strategy of VLBI data analysis on the estimation of Earth Orientation Parameters and station coordinates , 2016 .

[22]  H. Schuh,et al.  On the long-term stability of terrestrial reference frame solutions based on Kalman filtering , 2018, Journal of Geodesy.

[23]  C. Bizouard,et al.  Observation of the Earth’s nutation by the VLBI: how accurate is the geophysical signal , 2017, Journal of Geodesy.

[24]  Thomas A. Herring,et al.  Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Ea , 2002 .

[25]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[26]  Wei Chen,et al.  New estimates of the inertia tensor and rotation of the triaxial nonrigid Earth , 2010 .

[27]  H. Schuh,et al.  How Consistent are The Current Conventional Celestial and Terrestrial Reference Frames and The Conventional Earth Orientation Parameters , 2015 .

[28]  Nicole Capitaine,et al.  Improvement of the IAU 2000 precession model , 2005 .

[29]  V. Dehant,et al.  Basic Earth's Parameters as estimated from VLBI observations , 2017 .

[30]  J. Ferrándiz,et al.  Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession , 2017 .

[31]  Jean-Yves Richard,et al.  The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014 , 2019, Journal of Geodesy.

[32]  N. Capitaine,et al.  Evaluation of a possible upgrade of the IAU 2006 precession , 2017 .

[33]  H. Schuh,et al.  Testing a new Free Core Nutation empirical model , 2016 .

[34]  Johannes Böhm,et al.  The Global S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_1$$\end{document}1 Tide in Earth’s Nutation , 2016, Surveys in Geophysics.

[35]  Jan Vondrák,et al.  New determination of period and quality factor of Chandler wobble, considering geophysical excitations , 2017 .

[36]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[37]  W. Shen,et al.  Formulation of a Triaxial Three‐Layered Earth Rotation: Theory and Rotational Normal Mode Solutions , 2019, Journal of Geophysical Research: Solid Earth.

[38]  Assessing hydrological signal in polar motion from observations and geophysical models , 2018, Studia Geophysica et Geodaetica.

[39]  J. Ray,et al.  Polar motion excitations for an Earth model with frequency‐dependent responses: 1. A refined theory with insight into the Earth's rheology and core‐mantle coupling , 2013 .

[41]  On the accuracy of the theory of precession and nutation , 2014 .

[42]  Michael B. Heflin,et al.  JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System , 2017 .

[43]  J. Ferrándiz,et al.  Precession of the non-rigid Earth: Effect of the mass redistribution , 2019, Astronomy & Astrophysics.

[44]  J. Vondrak,et al.  Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic , 2006 .

[45]  Justyna Sliwinska,et al.  Determining and Evaluating the Hydrological Signal in Polar Motion Excitation from Gravity Field Models Obtained from Kinematic Orbits of LEO Satellites , 2019, Remote. Sens..

[46]  H. Schuh,et al.  An Improved Empirical Harmonic Model of the Celestial Intermediate Pole Offsets from a Global VLBI Solution , 2017 .

[47]  B. Chao,et al.  The Earth's free core nutation: Formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data , 2015 .

[48]  B. Chao,et al.  On the Physics of the Inner‐Core Wobble; Corrections to “Dynamics of the Inner‐Core Wobble Under Mantle‐Inner‐Core Gravitational Interactions” by B. F. Chao , 2018, Journal of Geophysical Research: Solid Earth.

[49]  Richard D. Rosen,et al.  The sub-bureau for atmospheric angular momentum of the International Earth Rotation Service: A meteorological data center with geodetic applications , 1993 .

[50]  Z. Malkin Joint analysis of celestial pole offset and free core nutation series , 2017, Journal of Geodesy.

[51]  J. Vondrák,et al.  EARTH ORIENTATION AND ITS EXCITATIONS BY ATMOSPHERE, OCEANS, AND GEOMAGNETIC JERKS , 2015 .

[52]  E. F. Arias,et al.  THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY , 2015 .

[53]  J. Ray,et al.  Polar motion excitations for an Earth model with frequency‐dependent responses: 2. Numerical tests of the meteorological excitations , 2013 .

[54]  Baocheng Zhang,et al.  A modified carrier-to-code leveling method for retrieving ionospheric observables and detecting short-term temporal variability of receiver differential code biases , 2018, Journal of Geodesy.

[55]  B. Chao Dynamics of the inner core wobble under mantle‐inner core gravitational interactions , 2017 .