Steffensen type inequalities for fuzzy integrals

We provide several Steffensen type inequalities for the Sugeno integral. The inequalities are of the form - ? a b f g d µ ≤ A - ? a a + λ f d µ + B or - ? a b f g d µ ≤ A - ? b - λ b f d µ + B , where A, B are constants, µ is a fuzzy measure on R , g: a, b] ? 0, 1], f : a , b ] ? R + is nonincreasing or nondecreasing and λ = ( b - a ) ? - ? a b g d µ . We show that some of our sufficient conditions are also necessary.

[1]  Radko Mesiar,et al.  Berwald type inequality for Sugeno integral , 2010, Appl. Math. Comput..

[2]  Radko Mesiar,et al.  On some advanced type inequalities for Sugeno integral and T-(S-)evaluators , 2012, Inf. Sci..

[3]  P. Rabier Steffensen’s inequality and ¹-^{\infy} estimates of weighted integrals , 2012 .

[4]  N. Balakrishnan,et al.  Evaluating expectations of L-statistics by the Steffensen inequality , 2006 .

[5]  L. Gajek,et al.  Steffensen-type inequalities for order and record statistics , 1997 .

[6]  J. F. Steffensen On certain inequalities between mean values, and their application to actuarial problems , 1918 .

[7]  A. Flores-Franulic,et al.  A Hardy-type inequality for fuzzy integrals , 2008, Appl. Math. Comput..

[8]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[9]  R. Srivastava Some Families of Integral, Trigonometric and Other Related Inequalities , 2011 .

[10]  Radko Mesiar,et al.  General Chebyshev type inequalities for Sugeno integrals , 2009, Fuzzy Sets Syst..

[11]  S. Dragomir,et al.  An application of Hayashi's inequality for differentiable functions , 1996 .

[12]  A. Flores-Franulic,et al.  A Chebyshev type inequality for fuzzy integrals , 2007, Appl. Math. Comput..

[13]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[14]  Yurilev Chalco-Cano,et al.  H-continuity of fuzzy measures and set defuzzification , 2006, Fuzzy Sets Syst..

[15]  Hari M. Srivastava,et al.  Some improvements and generalizations of Steffensen's integral inequality , 2007, Appl. Math. Comput..

[16]  A. Flores-Franulic,et al.  Markov type inequalities for fuzzy integrals , 2009, Appl. Math. Comput..

[17]  A. Flores-Franulic,et al.  On the level-continuity of fuzzy integrals , 1996, Fuzzy Sets Syst..

[18]  Dug Hun Hong,et al.  Steffensen's Integral Inequality for the Sugeno Integral , 2014, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  A. Flores-Franulic,et al.  A convolution type inequality for fuzzy integrals , 2008, Appl. Math. Comput..

[20]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..