Multiancestry Genome-Wide Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.

Jennifer G. Robinson | Nicholette D. Palmer | Christine A. Williams | Blair H. Smith | P. Elliott | M. Fornage | M. Nalls | C. Gieger | M. Waldenberger | A. Uitterlinden | A. Reiner | A. Peters | I. Deary | I. Ntalla | R. Mägi | T. Lehtimäki | E. Boerwinkle | C. Rotimi | M. Laakso | K. Strauch | M. Boehnke | Y. Kamatani | P. Ridker | D. Chasman | N. Samani | J. Connell | A. Dominiczak | P. Munroe | M. Farrall | Y. Teo | V. Gudnason | C. Bouchard | Albert Vernon Smith | C. Schmidt | J. Jonas | A. Zonderman | M. Evans | T. Rice | D. C. Rao | E. Tai | B. Horta | O. Raitakari | S. Kardia | D. Jacobs | T. Meitinger | K. Lohman | Yongmei Liu | S. Kritchevsky | B. Psaty | B. Penninx | B. Howard | D. Arking | A. Kraja | M. Province | A. Metspalu | T. Esko | H. Snieder | L. Milani | K. Mohlke | A. Jackson | K. Taylor | J. Rotter | P. Froguel | F. Hsu | T. Harris | T. Lakka | R. Rauramaa | I. Rudan | X. Shu | Jian-Min Yuan | W. Koh | W. Zheng | N. Sotoodehnia | J. Starr | C. Langefeld | D. Becker | L. Bielak | P. Peyser | N. Wareham | Jianjun Liu | T. Sofer | K. Rice | Xiaofeng Zhu | C. Nelson | P. Magnusson | N. Pedersen | C. V. van Duijn | P. Franks | L. Cupples | U. de Faire | M. Wojczynski | M. Kubo | Xiuqing Guo | J. Robinson | H. Grabe | K. North | S. Harris | C. Heng | H. Watkins | J. Kooner | C. Gu | S. Rich | N. Amin | C. Hayward | I. Kolčić | O. Polašek | Jennifer A. Smith | Wei Zhao | J. Faul | L. Launer | D. Weir | S. Kardia | T. Rankinen | T. Mosley | M. Feitosa | Y. Sung | T. Winkler | N. Franceschini | Ching-Yu Cheng | X. Sim | D. Vojinović | S. Musani | Changwei Li | A. Bentley | Michael R. Brown | K. Schwander | Melissa A. Richard | R. Noordam | H. Aschard | T. Bartz | R. Dorajoo | Virginia Fisher | F. Hartwig | A. Horimoto | A. Manning | S. Tajuddin | M. Alver | Mathilde Boissel | A. Campbell | Jin-Fang Chai | Xu Chen | J. Divers | Chuan Gao | A. Goel | Yanick P Hagemeijer | M. He | A. Kasturiratne | P. Komulainen | B. Kühnel | F. Laguzzi | J. Luan | N. Matoba | I. Nolte | Muhammad B. Riaz | A. Robino | M. A. Said | R. Scott | A. Stančáková | F. Takeuchi | B. Tayo | P. J. van der Most | T. V. Varga | Yajuan Wang | E. Ware | W. Wen | L. Yanek | Weihua Zhang | Jinghua Zhao | Saima Afaq | M. Amini | T. Aung | U. Broeckel | M. Canouil | S. Charumathi | L. de las Fuentes | R. de Mutsert | H. J. de Silva | Xuan Deng | Jingzhong Ding | Q. Duan | R. N. Eppinga | E. Evangelou | Y. Friedlander | I. Gandin | M. Ghanbari | S. Heikkinen | M. Hirata | T. Katsuya | C. Khor | T. Kilpeläinen | J. Krieger | J. Kuusisto | C. Langenberg | B. Lehne | Yize Li | Jingmin Liu | M. Loh | T. Louie | C. Mckenzie | Y. Milaneschi | J. O'connell | N. Palmer | N. Poulter | L. Raffel | L. Rose | P. Schreiner | W. Scott | Yuan Shi | M. Sims | N. Tan | Yih-Chung Tham | Lihua Wang | Y. X. Wang | W. Wei | Jie Yao | Caizheng Yu | D. Bowden | J. Chambers | B. Freedman | P. Gasparini | K. Leander | James G. Scott | P. van der Harst | L. Wagenknecht | A. Wickremasinghe | A. Pereira | R. V. van Dam | W. Gauderman | D. Mook-Kanamori | T. Kelly | E. Fox | C. Kooperberg | A. Morrison | C. Ballantyne | Kiang Liu | Ching‐Ti Liu | L. Lyytikäinen | Yii-Der I. Chen | Joseph H. Lee | J. Hixson | M. Nauck | D. van Heemst | M. Graff | M. Grove | P. Sever | G. Wilson | H. Koistinen | A. Manichaikul | R. Pazoki | J. Huffman | C. Kammerer | F. Giulianini | T. Wong | P. D. de Vries | Craig W. Johnson | M. Ikram | B. Yu | K. Mukamal | D. Vuckovic | R. Lemaitre | Yujie Wang | M. Pietzner | Traci M Bartz | N. Kato | Jingjing Liang | S. Sidney | Peter J. van der Most | Traci M. Bartz | Zhe Wang | C. Eaton | Terrence G. Forrester | O. Franco | M. Brown | J. Yao | A. Smith | T. Varga | D. Rao | Muhammad Riaz | Maris Alver | S. Afaq | Franco Giulianini | Y. Chen | M. Boissel | Xiaofeng Zhu | P. van der harst | Charles B. Eaton | Terrence Forrester | Michael R. Brown | C. Johnson | A. Smith | M. Richard | L. Rose | Weihua Zhang | J. Scott | A. Uitterlinden | Wei Zhao | C. McKenzie | A. Goel | M. Kubo | C. V. van Duijn | B. Psaty | Brigitte Kühnel | S. Kardia | J. Krieger | R. Scott | C. Nelson | M. A. Ikram | S. Harris | R. Scott | A. Peters | A. R. Wickremasinghe | A. Jackson | K. Taylor | Wei Zhao | A. Campbell | Y. Hagemeijer | Jennifer A. Smith | K. Taylor | A. Peters | Y. Tham | Michael R. Brown | Jeffery R O'connell | D. Vojinovic

[1]  Raquel S. Sevilla,et al.  Exome-wide association study of plasma lipids in >300,000 individuals , 2017, Nature Genetics.

[2]  Alan D. Lopez,et al.  Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015 , 2017, Journal of the American College of Cardiology.

[3]  E. Kirk Genes, Environment, and the Heart: Putting the Pieces Together. , 2017, Circulation. Cardiovascular genetics.

[4]  P. Munroe,et al.  Multiancestry Study of Gene–Lifestyle Interactions for Cardiovascular Traits in 610 475 Individuals From 124 Cohorts: Design and Rationale , 2017, Circulation. Cardiovascular genetics.

[5]  Andrew D. Johnson,et al.  Edinburgh Research Explorer Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits , 2022 .

[6]  Sanghoon Moon,et al.  Association analyses of East Asian individuals and trans‐ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels , 2017, Human molecular genetics.

[7]  Jie Huang,et al.  Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study , 2017, PloS one.

[8]  K. Kohara,et al.  Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers. , 2016, Atherosclerosis.

[9]  S. Rafii,et al.  VEGF-B Improves Metabolic Health through Vascular Pruning of Fat. , 2016, Cell metabolism.

[10]  K. Alitalo,et al.  VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications. , 2016, Cell metabolism.

[11]  Marcelo P. Segura-Lepe,et al.  Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels , 2016, Journal of Medical Genetics.

[12]  E. Boerwinkle,et al.  Causal Role of Alcohol Consumption in an Improved Lipid Profile: The Atherosclerosis Risk in Communities (ARIC) Study , 2016, PloS one.

[13]  D. Kereiakes,et al.  The PCSK9 Inhibitors: A Novel Therapeutic Target Enters Clinical Practice. , 2015, American health & drug benefits.

[14]  Tanya M. Teslovich,et al.  The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study , 2015, PLoS Genetics.

[15]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[16]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[17]  Sara M. Willems,et al.  The impact of low-frequency and rare variants on lipid levels , 2015, Nature Genetics.

[18]  H. Mabuchi,et al.  Lipoprotein lipase and atherosclerosis , 1998, Annals of clinical biochemistry.

[19]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[20]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[21]  M. Livingston,et al.  Underreporting in alcohol surveys: whose drinking is underestimated? , 2015, Journal of studies on alcohol and drugs.

[22]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[23]  K. Alitalo,et al.  Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of Vegf-b knockout mice , 2014, Scientific Reports.

[24]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[25]  Jennifer G. Robinson,et al.  Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. , 2014, American journal of human genetics.

[26]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[27]  I. Wakabayashi Relationship between alcohol intake and lipid accumulation product in middle-aged men. , 2013, Alcohol and alcoholism.

[28]  B. Klop,et al.  Alcohol and plasma triglycerides , 2013, Current opinion in lipidology.

[29]  N. Martin,et al.  Metabolic and biochemical effects of low-to-moderate alcohol consumption. , 2013, Alcoholism, clinical and experimental research.

[30]  A. Krainer,et al.  Splicing therapeutics in SMN 2 and APOB , 2013 .

[31]  Tom R. Gaunt,et al.  Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. , 2012, American journal of human genetics.

[32]  S. Stone-Elander,et al.  Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes , 2012, Nature.

[33]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[34]  R. BailénAlmorox Effect of a monoclonal antibody to PCSK9 on LDL cholesterol , 2012 .

[35]  G. Yancopoulos,et al.  Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. , 2012, The New England journal of medicine.

[36]  G. Lizard,et al.  A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. , 2012, Molecular nutrition & food research.

[37]  E. Brinton Effects of Ethanol Intake on Lipoproteins , 2012, Current Atherosclerosis Reports.

[38]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[39]  Örjan Smedby,et al.  Effects of moderate red wine consumption on liver fat and blood lipids: a prospective randomized study , 2011, Annals of medicine.

[40]  W. Ghali,et al.  Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: systematic review and meta-analysis of interventional studies , 2011, BMJ : British Medical Journal.

[41]  Josée Dupuis,et al.  Meta‐analysis of gene‐environment interaction: joint estimation of SNP and SNP × environment regression coefficients , 2011, Genetic epidemiology.

[42]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[43]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[44]  Sidney C. Smith,et al.  High-density lipoprotein subclasses are a potential intermediary between alcohol intake and reduced risk of cardiovascular disease: The Rancho Bernardo Study , 2010, British Journal of Nutrition.

[45]  S. Stone-Elander,et al.  Vascular endothelial growth factor B controls endothelial fatty acid uptake , 2010, Nature.

[46]  A. Prat,et al.  Genetic Variation at the Proprotein Convertase Subtilisin/Kexin Type 5 Gene Modulates High-Density Lipoprotein Cholesterol Levels , 2009, Circulation. Cardiovascular genetics.

[47]  Adrian R Krainer,et al.  Splicing therapeutics in SMN2 and APOB. , 2009, Current opinion in molecular therapeutics.

[48]  K. Lunetta,et al.  Methods in Genetics and Clinical Interpretation Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Design of Prospective Meta-Analyses of Genome-Wide Association Studies From 5 Cohorts , 2010 .

[49]  I. Wakabayashi Associations of alcohol drinking and cigarette smoking with serum lipid levels in healthy middle-aged men. , 2008, Alcohol and alcoholism.

[50]  D. Rader,et al.  Hepatic proprotein convertases modulate HDL metabolism. , 2007, Cell metabolism.

[51]  M. Matsuda,et al.  Angiopoietin-Like Protein3 Regulates Plasma HDL Cholesterol Through Suppression of Endothelial Lipase , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[52]  Patrick Royston,et al.  The cost of dichotomising continuous variables , 2006, BMJ : British Medical Journal.

[53]  G. Abecasis,et al.  Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies , 2006, Nature Genetics.

[54]  K. Tsutsumi,et al.  Lipoprotein lipase and atherosclerosis. , 2003, Current vascular pharmacology.

[55]  D. Rader,et al.  Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. , 2003, The Journal of clinical investigation.

[56]  J. Higgins,et al.  Superior role of apolipoprotein B48 over apolipoprotein B100 in chylomicron assembly and fat absorption: an investigation of apobec-1 knock-out and wild-type mice. , 2001, The Biochemical journal.

[57]  N. Navaratnam,et al.  RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. , 2000, Biochimica et biophysica acta.

[58]  S. Fortmann,et al.  Associations of HDL, HDL(2), and HDL(3) cholesterol and apolipoproteins A-I and B with lifestyle factors in healthy women and men: the Stanford Five City Project. , 2000, Preventive medicine.

[59]  E. Rimm,et al.  Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors , 1999, BMJ.

[60]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[61]  L. Beilin,et al.  A controlled trial of the effects of pattern of alcohol intake on serum lipid levels in regular drinkers. , 1998, Atherosclerosis.

[62]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[63]  R. Levy,et al.  Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. , 1972, Clinical chemistry.