Variance reallocation in Taguchi's robust design framework

The appropriate use of antithetic random variates has been shown to improve the precision of response surface model estimation for simulation. We apply this approach to simulation experiments designed to determine operating conditions that reduce response variability by using Genichi Taguchi’s parameter design framework. Antithetic random number streams can be viewed as another level of complexity in the experiment design: we call this class of simulationspecific factors artificial factors. A simple example illustrates how antithetic random variates may be beneficial for robust design in simulation settings.

[1]  James R. Wilson,et al.  Validation of Simulation Analysis Methods for the Schruben-Margolin Correlation-Induction Strategy , 1992, Oper. Res..

[2]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[3]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[4]  J. D. Tew Correlation-induction techniques for fitting second-order metamodels in simulation experiments , 1989, WSC '89.

[5]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[6]  Susan M. Sanchez,et al.  Designing simulation experiments: Taguchi methods and response surface metamodels , 1991, 1991 Winter Simulation Conference Proceedings..

[7]  J. Pignatiello,et al.  Discussion: Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[8]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[9]  Kenneth Constantine,et al.  Confidence interval estimation of P(Y , 1990 .

[10]  R. N. Kackar Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[11]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[12]  Kwok-Leung Tsui,et al.  Economical experimentation methods for robust design , 1991 .

[13]  W. David Kelton Designing computer simulation experiments , 1988, WSC '88.

[14]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[15]  Robert G. Sargent Research issues in metamodeling , 1991, 1991 Winter Simulation Conference Proceedings..

[16]  Joseph J. Pignatiello,et al.  TOP TEN TRIUMPHS AND TRAGEDIES OF GENICHI TAGUCHI , 1991 .

[17]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[18]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[19]  Jeffrey D. Tew,et al.  Correlation-Induction Techniques For Fitting Second-Order Metamodels In Simulation Experiments , 1989, 1989 Winter Simulation Conference Proceedings.

[20]  Lee W. Schruben,et al.  DESIGNING CORRELATION INDUCTION STRATEGIES FOR SIMULATION EXPERIMENTS , 1979 .