Canonical Extensions and Kripke–Galois Semantics for Non-distributive Logics

This article presents an approach to the semantics of non-distributive propositional logics that is based on a lattice representation (and duality) theorem that delivers a canonical extension of the lattice. Our approach supports both a plain Kripke-style semantics and, by restriction, a general frame semantics. Unlike the framework of generalized Kripke frames (RS-frames), the semantic approach presented in this article is suitable for modeling applied logics (such as temporal, or dynamic), as it respects the intended interpretation of the logical operators. This is made possible by restricting admissible interpretations.

[1]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[2]  Chrysafis Hartonas,et al.  Stone duality for lattice expansions , 2018, Log. J. IGPL.

[3]  Miroslav Haviar,et al.  A Fresh Perspective on Canonical Extensions for Bounded Lattices , 2012, Applied Categorical Structures.

[4]  Mai Gehrke,et al.  Generalized Kripke Frames , 2006, Stud Logica.

[5]  Gerd Hartung,et al.  A topological representation of lattices , 1992 .

[6]  Chrysafis Hartonas,et al.  First-order frames for orthomodular quantum logic , 2016, J. Appl. Non Class. Logics.

[7]  Chrysafis Hartonas,et al.  Order-Dual Relational Semantics for Non-distributive Propositional Logics: A General Framework , 2016, Journal of Philosophical Logic.

[8]  Chrysafis Hartonas,et al.  Stone duality for lattices , 1997 .

[9]  Alasdair Urquhart,et al.  A topological representation theory for lattices , 1978 .

[10]  Chrysafis Hartonas Discrete duality for lattices with modal operators , 2019, J. Log. Comput..

[11]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for non-distributive logics , 2016, Ann. Pure Appl. Log..

[12]  Chrysafis Hartonas,et al.  Modal and temporal extensions of non-distributive propositional logics , 2016, Log. J. IGPL.

[13]  Chrysafis Hartonas Order-Dual Relational Semantics for Non-distributive Propositional Logics: A General Framework , 2018, J. Philos. Log..

[14]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[15]  Miroslav Haviar,et al.  TiRS graphs and TiRS frames: a new setting for duals of canonical extensions , 2015 .

[16]  J. Michael Dunn,et al.  Gaggle Theory: An Abstraction of Galois Connections and Residuation with Applications to Negation, Implication, and Various Logical Operations , 1990, JELIA.

[17]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[18]  Chrysafis Hartonas,et al.  Reasoning with Incomplete Information in Generalized Galois Logics Without Distribution: The Case of Negation and Modal Operators , 2016 .

[19]  Katalin Bimbó,et al.  Relational semantics of nonclassical logical calculi. CSLI Lecture Notes, no. 188 , 2010 .

[20]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[21]  Chrysafis Hartonas,et al.  Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics , 1997, Stud Logica.

[22]  Lorijn van Rooijen,et al.  Generalized Kripke semantics for the Lambek-Grishin calculus , 2012, Log. J. IGPL.