Robust residual generation for linear fault diagnosis: an algebraic setting with examples

We are generating residuals for linear fault diagnosis and isolation which are 1. robust with respect to a large variety of additive disturbances,  A reader who is already familiar with this algebraic setting may directly proceed to § 3. The numerous examples on various aspects of diagnosis, like the previous one, are written on the other hand in such a way that they may be understood by anyone who is not mastering those mathematical tools. We hope therefore that our results might be understood by a large community. 2. working in closed-loop, even with uncertain parameters. Several examples with their computer simulations, including a concrete case-study of a two mass system, are enlightening our viewpoint. Our methods, which are mainly of algebraic flavour (module theory, differential algebra, and operational calculus), are borrowed from recent works on control and identification.

[1]  Aiping Xu,et al.  Residual generation for fault diagnosis in linear time-varying systems , 2004, IEEE Transactions on Automatic Control.

[2]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[3]  M. Fliess,et al.  Reconstructeurs d'état , 2004 .

[4]  C. Knospe,et al.  PID control , 2006, IEEE Control Systems.

[5]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[6]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[7]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[8]  Cédric Join,et al.  An introduction to nonlinear fault diagnosis with an application to a congested internet router , 2004 .

[9]  M. Fliess An algebraic approach to fault diagnosis for linear systems , 2003 .

[10]  J. Magni,et al.  On residual generation by observer and parity space approaches , 1994, IEEE Trans. Autom. Control..

[11]  M. Fliess Automatique et corps différentiels , 1989 .

[12]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[13]  M. Fliess,et al.  Une interprétation algébrique de la transformation de laplace et des matrices de transfert , 1994 .

[14]  H. T. H. PIAGGIO,et al.  The Operational Calculus , 1943, Nature.

[15]  Rajamani Doraiswami,et al.  A robust influence matrix approach to fault diagnosis , 1996, IEEE Trans. Control. Syst. Technol..

[16]  P. M. Frank,et al.  FDI based on parameter and output estimation: An integrated approach , 1999, 1999 European Control Conference (ECC).

[17]  M. Massoumnia A geometric approach to the synthesis of failure detection filters , 1986 .

[18]  Marcel Staroswiecki,et al.  Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems , 2001, Autom..

[19]  Richard Vernon Beard,et al.  Failure accomodation in linear systems through self-reorganization. , 1971 .

[20]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[21]  M. Fliess,et al.  Correcteurs proportionnels-intégraux généralisés , 2002 .

[22]  Janos Gertler,et al.  A new structural framework for parity equation-based failure detection and isolation , 1990, Autom..

[23]  Ramine Nikoukhah,et al.  Innovations generation in the presence of unknown inputs: Application to robust failure detection , 1994, Autom..

[24]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[25]  R. Doraiswami,et al.  A real-time fault diagnosis and parameter tracking scheme , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[27]  Henri Bourlès,et al.  Finite poles and zeros of linear systems: An intrinsic approach , 1997 .

[28]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[29]  R. Isermann,et al.  Fault detection based on adaptive parity equations and single-parameter tracking , 1996 .

[30]  Harold Lee Jones,et al.  Failure detection in linear systems , 1973 .

[31]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[32]  Richard Marquez,et al.  A transfer function approach to fault diagnosis for linear systems: inversion and low-pass filters , 2004 .

[33]  Sette Diop,et al.  Elimination in control theory , 1991, Math. Control. Signals Syst..

[34]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[35]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[36]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[37]  Cédric Join,et al.  Fault diagnosis of closed loop linear systems with parametric uncertainties , 2004 .

[38]  Sette Diop,et al.  An algebraic and data derivative information approach to nonlinear system diagnosis , 2001, 2001 European Control Conference (ECC).

[39]  John E. White,et al.  Detection Filter Design: Spectral Theory and Algorithms , 1986, 1986 American Control Conference.

[40]  H. Bourlès Impulsive systems and behaviors in the theory of linear dynamical systems , 2005 .

[41]  M. Fliess A remark on Willems' trajectory characterization of linear controllability , 1992 .

[42]  Paul M. Frank,et al.  Fault Diagnosis in Dynamic Systems , 1993, Robotics, Mechatronics and Manufacturing Systems.

[43]  Alexander Medvedev,et al.  Fault detection and isolation by a continuous parity space method , 1995, Autom..

[44]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[45]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2004, IEEE Transactions on Automatic Control.

[46]  Harry L. Trentelman,et al.  On flat systems behaviors and observable image representations , 2004, Syst. Control. Lett..

[47]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[48]  Jean Lévine,et al.  Flat output characterization for linear systems using polynomial matrices , 2003, Syst. Control. Lett..

[49]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[50]  Richard Marquez,et al.  An extension of predictive control, PID regulators and Smith predictors to some linear delay systems , 2002 .

[51]  Alexandru Buium,et al.  Differential algebra and diophantine geometry , 1994 .

[52]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[53]  Michèle Basseville,et al.  Fault Detection and Isolation in Nonlinear Dynamic Systems: A Combined Input-Output and Local Approach , 1998, Autom..

[54]  Fliess Michel,et al.  Control via state estimations of some nonlinear systems , 2004 .

[55]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[56]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[57]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .