Symplectic maps, variational principles, and transport

Symplectic maps are the discrete-time analog of Hamiltonian motion. They arise in many applications including accelerator, chemical, condensed-matter, plasma, and fluid physics. Twist maps correspond to Hamiltonians for which the velocity is a monotonic function of the canonical momentum. Twist maps have a Lagrangian variational formulation. One-parameter families of twist maps typically exhibit the full range of possible dynamics--from simple or integrable motion to complex or chaotic motion. One class of orbits, the minimizing orbits, can be found throughout this transition; the properties of the minimizing orbits are discussed in detail. Among these orbits are the periodic and quasiperiodic orbits, which form a scaffold in the phase space and constrain the motion of the remaining orbits. The theory of transport deals with the motion of ensembles of trajectories. The variational principle provides an efficient technique for computing the flux escaping from regions bounded by partial barriers formed from minimizing orbits. Unsolved problems in the theory of transport include the explanation for algebraic tails in correlation functions, and its extension to maps of more than two dimensions.

[1]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[2]  George D. Birkhoff,et al.  Surface transformations and their dynamical applications , 1922 .

[3]  Harold Marston Morse A fundamental class of geodesics on any closed surface of genus greater than one , 1924 .

[4]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .

[5]  G. A. Hedlund Geodesics on a Two-Dimensional Riemannian Manifold With Periodic Coefficients , 1932 .

[6]  Eugene P. Wigner,et al.  Calculation of the Rate of Elementary Association Reactions , 1937 .

[7]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[8]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[9]  M. Rosenbluth,et al.  Destruction of magnetic surfaces by magnetic field irregularities , 1966, Hamiltonian Dynamical Systems.

[10]  Leonid A. Bunimovich,et al.  On ergodic properties of certain billiards , 1974 .

[11]  R. Devaney Reversible diffeomorphisms and flows , 1976 .

[12]  A. Dragt,et al.  Insolubility of trapped particle motion in a magnetic dipole field , 1976 .

[13]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[14]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .

[15]  S. Aubry The New Concept of Transitions by Breaking of Analyticity in a Crystallographic Model , 1978 .

[16]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[17]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[18]  I. Percival A variational principle for invariant tori of fixed frequency , 1979 .

[19]  Homogeneous model for resonant particle diffusion in an open magnetic confinement system , 1979 .

[20]  H. Mynick,et al.  Particle stochasticity due to magnetic perturbations of axisymmetric geometries , 1980 .

[21]  Statistical characterization of periodic, area-preserving mappings , 1981 .

[22]  M. Feigenbaum,et al.  Universal Behaviour in Families of Area-Preserving Maps , 1981, Hamiltonian Dynamical Systems.

[23]  M. Wojtkowski,et al.  A model problem with the coexistence of stochastic and integrable behaviour , 1981, Hamiltonian Dynamical Systems.

[24]  M. Berry,et al.  Regularity and chaos in classical mechanics, illustrated by three deformations of a circular 'billiard' , 1981 .

[25]  M. Rosenbluth,et al.  Fourier-space paths applied to the calculation of diffusion for the Chirikov-Taylor model , 1981 .

[26]  A. Katok Some remarks on Birkhoff and Mather twist map theorems , 1982, Ergodic Theory and Dynamical Systems.

[27]  I. Percival Chaotic boundary of a Hamiltonial map , 1982 .

[28]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[29]  A. Boozer,et al.  Particle diffusion in tokamaks with partially destroyed magnetic surfaces , 1982 .

[30]  Michael W. Mislove,et al.  AN INTRODUCTION TO THE THEORY OF , 1982 .

[31]  J. Bialek,et al.  Fractal Diagrams for Hamiltonian Stochasticity , 1982, Hamiltonian Dynamical Systems.

[32]  Effect of noise on the standard mapping , 1982, nlin/0501021.

[33]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .

[34]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[35]  Charles F. F. Karney Long-time correlations in the stochastic regime , 1983, nlin/0501023.

[36]  S. Aubry Exact models with a complete Devil's staircase , 1983 .

[37]  J. Cary,et al.  Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .

[38]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[39]  R. MacKay,et al.  Linear Stability of Periodic Orbits in Lagrangian Systems , 1983, Hamiltonian Dynamical Systems.

[40]  H. Abarbanel,et al.  Correlations of periodic, area-preserving maps , 1983 .

[41]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[42]  B. Chirikov Chaotic dynamics in Hamiltonian systems with divided phase space , 1983 .

[43]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[44]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[45]  L. Kadanoff,et al.  Extended chaos and disappearance of KAM trajectories , 1984 .

[46]  T. Geisel,et al.  Anomalous diffusion in intermittent chaotic systems , 1984 .

[47]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[48]  J. Mather Non-existence of invariant circles , 1984, Ergodic Theory and Dynamical Systems.

[49]  L. Kadanoff,et al.  Escape from strange repellers. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Cary Construction of three-dimensional vacuum magnetic fields with dense nested flux surfaces , 1984 .

[51]  D. Goroff Hyperbolic sets for twist maps , 1985, Ergodic Theory and Dynamical Systems.

[52]  J. Mather More Denjoy minimal sets for area preserving diffeomorphisms , 1985 .

[53]  S. Fishman,et al.  Diffusion in the standard map , 1985 .

[54]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[55]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[56]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[57]  Michael J. Davis Bottlenecks to intramolecular energy transfer and the calculation of relaxation rates , 1985 .

[58]  Farmer,et al.  Fat fractals on the energy surface. , 1985, Physical review letters.

[59]  J. Mather A criterion for the non-existence of invariant circles , 1986 .

[60]  On invariant circles for area-preserving maps , 1986 .

[61]  Julio M. Ottino,et al.  Analysis of chaotic mixing in two model systems , 1986, Journal of Fluid Mechanics.

[62]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[63]  Y. Ichikawa,et al.  Stochastic diffusion in the standard map , 1986 .

[64]  Li,et al.  Fractal dimension of cantori. , 1986, Physical review letters.

[65]  Meiss Class renormalization: Islands around islands. , 1986, Physical review. A, General physics.

[66]  K. Hepp,et al.  Nonlinear dynamics aspects of particle accelerators , 1986 .

[67]  I. Percival,et al.  A linear code for the sawtooth and cat maps , 1987 .

[68]  R. MacKay Hyperbolic cantori have dimension zero , 1987 .

[69]  James D. Meiss,et al.  Resonances in area-preserving maps , 1987 .

[70]  Greene,et al.  Scaling anomaly at the critical transition of an incommensurate structure. , 1987, Physical review. A, General physics.

[71]  J. Meiss,et al.  Orbit extension method for finding unstable orbits , 1987 .

[72]  Q. Chen Area as a devil's staircase in twist maps , 1987 .

[73]  Geisel,et al.  Generic 1/f noise in chaotic Hamiltonian dynamics. , 1987, Physical review letters.

[74]  I. Percival,et al.  Arithmetical properties of strongly chaotic motions , 1987 .

[75]  Grebogi,et al.  Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.

[76]  Michael J. Davis,et al.  A phase space analysis of the collinear I+HI reaction , 1988 .

[77]  V. Bangert Mather Sets for Twist Maps and Geodesics on Tori , 1988 .

[78]  A. Veselov Integrable discrete-time systems and difference operators , 1988 .

[79]  J. Stark,et al.  Converse KAM theory for symplectic twist maps , 1989 .

[80]  C. Thompson,et al.  Integrable mappings and soliton equations II , 1989 .

[81]  R. MacKay,et al.  Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation , 1989 .

[82]  Murray,et al.  Resonances and diffusion in periodic Hamiltonian maps. , 1989, Physical review letters.

[83]  I. Dana Hamiltonian transport on unstable periodic orbits , 1989 .

[84]  Y. Suris,et al.  Integrable mappings of the standard type , 1989 .

[85]  J. Meiss,et al.  Flux, resonances and the devil's staircase for the sawtooth map , 1989 .

[86]  J. Meiss,et al.  Periodic orbits for reversible, symplectic mappings , 1989 .

[87]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[88]  V. Rom-Kedar Transport rates of a class of two-dimensional maps and flows , 1990 .

[89]  S. Wiggins,et al.  Transport in two-dimensional maps , 1990 .

[90]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[91]  R. de la Llave,et al.  Accurate strategies for small divisor problems , 1990 .

[92]  J. Meiss,et al.  Resonances and transport in the sawtooth map , 1990 .

[93]  S. Wiggins,et al.  An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.

[94]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[95]  Robert W. Easton,et al.  Transport through chaos , 1991 .

[96]  J. Veerman,et al.  Intersection properties of invariant manifolds in certain twist maps , 1991 .

[97]  S. Wiggins,et al.  A global study of enhanced stretching and diffusion in chaotic tangles , 1991 .

[98]  Geisel,et al.  Unusual manifold structure and anomalous diffusion in a Hamiltonian model for chaotic guiding-center motion. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[99]  P. Santini,et al.  Integrable symplectic maps , 1991 .

[100]  N. Murray Critical function for the standard map , 1991 .