International Journal of Electronics and Communications (aeü) Analog Circuit Sizing via Swarm Intelligence

Abstract Together with the increase in electronic circuit complexity, the design and optimization processes have to be automated with high accuracy. Predicting and improving the design quality in terms of performance, robustness and cost is the central concern of electronic design automation. Generally, optimization is a very difficult and time consuming task including many conflicting criteria and a wide range of design parameters. Particle swarm optimization (PSO) was introduced as an efficient method for exploring the search space and handling constrained optimization problems. In this work, PSO has been utilized for accommodating required functionalities and performance specifications considering optimal sizing of analog integrated circuits with high optimization ability in short computational time. PSO based design results are verified with SPICE simulations and compared to previous studies.

[1]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[2]  Christofer Toumazou,et al.  The invention of CMOS amplifiers using genetic programming and current-flow analysis , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Yong-Bin Kim,et al.  ASLIC: A low power CMOS analog circuit design automation , 2006, Integr..

[4]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[5]  Alberto L. Sangiovanni-Vincentelli,et al.  DELIGHT.SPICE: an optimization-based system for the design of integrated circuits , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Tülay Yildirim,et al.  Performance Evaluation of Evolutionary Algorithms for Optimal Filter Design , 2012, IEEE Transactions on Evolutionary Computation.

[8]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[9]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[10]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[11]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[12]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[13]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[14]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[15]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[16]  Andreas König,et al.  Investigation of particle swarm optimization for dynamic reconfiguration of field-programmable analog circuits , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  Kiyong Choi,et al.  Parasitic-aware design and optimization of a CMOS RF power amplifier , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Mohamed I. Elmasry,et al.  STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[21]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[22]  Stephen P. Boyd,et al.  Optimal design of a CMOS op-amp via geometric programming , 2001, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[23]  Christofer Toumazou,et al.  ISAID-a methodology for automated analog IC design , 1990, IEEE International Symposium on Circuits and Systems.

[24]  Samir Ben Salem,et al.  A high performances CMOS CCII and high frequency applications , 2006 .

[25]  Tulay Yildirim,et al.  Swarm intelligence based sizing methodology for CMOS operational amplifier , 2011, 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI).

[26]  Marc J. Schniederjans,et al.  Goal Programming: Methodology and Applications , 2010 .

[27]  P.R. Gray,et al.  OPASYN: a compiler for CMOS operational amplifiers , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Mourad Loulou,et al.  A novel heuristic for multi-objective optimization of analog circuit performances , 2009 .

[29]  Maryam Shojaei Baghini,et al.  Low-Power Low-Voltage Analog Circuit Design Using Hierarchical Particle Swarm Optimization , 2009, 2009 22nd International Conference on VLSI Design.

[30]  R. Bellman Dynamic programming. , 1957, Science.

[31]  Domine Leenaerts,et al.  DARWIN: CMOS opamp Synthesis by Means of a Genetic Algorithm , 1995, 32nd Design Automation Conference.

[32]  M. Loulou,et al.  Optimizing second generation current conveyors using particle swarm optimization , 2007, 2007 Internatonal Conference on Microelectronics.

[33]  G. Gielen,et al.  Decomposition-based multi-objective optimization of second-generation current conveyors , 2009, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems.

[34]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[35]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[36]  Rob A. Rutenbar,et al.  MAELSTROM: efficient simulation-based synthesis for custom analog cells , 1999, DAC '99.

[37]  Manoj Kumar Tiwari,et al.  Swarm Intelligence, Focus on Ant and Particle Swarm Optimization , 2007 .

[38]  Francisco V. Fernández,et al.  A memetic approach to the automatic design of high-performance analog integrated circuits , 2009, TODE.

[39]  Mourad Loulou,et al.  Analog circuit design optimization through the particle swarm optimization technique , 2010 .

[40]  Andreas König,et al.  Particle Swarm Optimization for Reconfigurable Sensor Electronics - Case Study: 3 Bit Flash ADC , 2006, 2006 International Workshop on Intelligent Solutions in Embedded Systems.

[41]  Rob A. Rutenbar,et al.  Integer programming based topology selection of cell-level analog circuits , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[42]  Sina Balkir,et al.  A compact optimization methodology for single-ended LNA , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[43]  Ulf Schlichtmann,et al.  The Sizing Rules Method for CMOS and Bipolar Analog Integrated Circuit Synthesis , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Sina Balkir,et al.  A Synthesis Tool for CMOS RF Low-Noise Amplifiers , 2008, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[45]  Patrick Siarry,et al.  Enhanced simulated annealing for globally minimizing functions of many-continuous variables , 1997, TOMS.

[46]  G. Rodriguez,et al.  Applications of evolutionary algorithms in the design automation of analog integrated circuits , 2010 .

[47]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[48]  Mourad Loulou,et al.  A Particle Swarm Optimization technique used for the improvement of analogue circuit performances , 2009 .

[49]  Rob A. Rutenbar,et al.  Computer-aided design of analog and mixed-signal integrated circuits , 2000, Proceedings of the IEEE.

[50]  J. B. Grimbleby,et al.  Automatic analogue circuit synthesis using genetic algorithms , 2000 .