Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages

We introduce a generic expression language describing behaviours of finite coalgebras over sets; besides relational systems, this covers, e.g., weighted, probabilistic, and neighbourhood-based system types. We prove a generic Kleene-type theorem establishing a correspondence between our expressions and finite systems. Our expression language is similar to one introduced in previous work by Myers but has a semantics defined in terms of a particular form of predicate liftings as used in coalgebraic modal logic; in fact, our expressions can be regarded as a particular type of modal fixed point formulas. The predicate liftings in question are required to satisfy a natural preservation property; we show that this property holds in particular for the Moss liftings introduced by Marti and Venema in work on lax extensions.

[1]  Alexandra Silva,et al.  Non-Deterministic Kleene Coalgebras , 2010, Log. Methods Comput. Sci..

[2]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[3]  H. Peter Gumm,et al.  Monoid-labeled transition systems , 2001, CMCS.

[4]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[5]  Luca Aceto,et al.  Reactive Systems: Figures and tables , 2007 .

[6]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[7]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[8]  Luca Aceto,et al.  Termination, deadlock, and divergence , 1992, JACM.

[9]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[10]  Raul Andres Leal Predicate Liftings Versus Nabla Modalities , 2008, CMCS.

[11]  Luca Aceto,et al.  Reactive Systems: Modelling, Specification and Verification , 2007 .

[12]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[13]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[14]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[15]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[16]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[17]  David Peleg,et al.  Concurrent dynamic logic , 1985, STOC '85.

[18]  Joseph Sifakis,et al.  A Modal Characterization of Observational Congruence on Finite Terms of CCS , 1986, Inf. Control..

[19]  Daniel Gorín,et al.  Subsumption Checking in Conjunctive Coalgebraic Fixpoint Logics , 2014, Advances in Modal Logic.

[20]  Bernhard Steffen,et al.  Characteristic Formulae for Processes with Divergence , 1994, Inf. Comput..

[21]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[22]  Alexandra Silva,et al.  Quantitative Kleene coalgebras , 2011, Inf. Comput..

[23]  H. Weinert on O-simple semirings, semigroup semirings, and two kinds of division semirings , 1984 .

[24]  Vera Trnková,et al.  General theory of relational automata , 1980, Fundam. Informaticae.

[25]  Stefan Milius,et al.  Generic Trace Semantics and Graded Monads , 2015, CALCO.

[26]  Yde Venema Automata and fixed point logic: A coalgebraic perspective , 2006, Inf. Comput..

[27]  Luca Aceto,et al.  Reactive Systems: Frontmatter , 2007 .

[28]  Alexander Kurz,et al.  Equational Coalgebraic Logic , 2009, MFPS.

[29]  Alexandra Silva,et al.  Towards a Coalgebraic Chomsky Hierarchy - (Extended Abstract) , 2014, IFIP TCS.

[30]  Dirk Pattinson,et al.  EXPTIME Tableaux for the Coalgebraic µ-Calculus , 2009, CSL.

[31]  Yde Venema,et al.  Completeness of Flat Coalgebraic Fixpoint Logics , 2018, ACM Trans. Comput. Log..

[32]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[33]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[34]  Daniel Gorín,et al.  Simulations and Bisimulations for Coalgebraic Modal Logics , 2013, CALCO.

[35]  Hans Bekic,et al.  Definable Operation in General Algebras, and the Theory of Automata and Flowcharts , 1984, Programming Languages and Their Definition.

[36]  Rohit Parikh,et al.  Propositional game logic , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[37]  Yde Venema,et al.  Lax extensions of coalgebra functors and their logic , 2015, J. Comput. Syst. Sci..

[38]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..