Molecular modeling, vibrational dynamics and NBO analysis of a synthetic bio-relevant warfarin analog

[1]  T. Yadav,et al.  Theoretical spectroscopic signature of synephrine using DFT and the effect of hydrogen removal , 2022 .

[2]  J. Chowdhury,et al.  Spectroscopic Investigation of Electron-Releasing Functional Groups Substituted N-Iso-Butyl, S-2-Nitro-1-Phenylethyl Dithiocarbamate – A DFT Approach , 2021, Polycyclic Aromatic Compounds.

[3]  G. Brahmachari,et al.  Facile and Straightforward Synthesis of Racemic Version of Substituted 3-[3-(2-Hydroxyphenyl)-3-oxo-1-arylpropyl]-4-hydroxycoumarins: Easy Access to a Series of Biorelevant Warfarin Analogues , 2021, Synthesis.

[4]  G. P. Savage,et al.  A novel vitamin K derived anticoagulant tolerant to genetic variations of vitamin K epoxide reductase , 2020, Journal of thrombosis and haemostasis : JTH.

[5]  J. S. Kwak,et al.  The synthesis of warfarin using a reconfigurable-reactor platform integrated to a multiple variable optimization tool. , 2020, Chemistry.

[6]  G. Brahmachari,et al.  Synthesis, structural and vibrational spectroscopic investigation of molecules: N-n-butyl, S-2-nitro-1-phenylethyl dithiocarbamate and N-n-butyl, S-2-nitro-1-(4-flurophenyl)ethyl dithiocarbamate , 2020 .

[7]  A. Oraby,et al.  Molecular electrostatic potential mapping for PANI emeraldine salts and PANI@Ag core-shell , 2019, Egyptian Journal of Chemistry.

[8]  S. Mukanganyama,et al.  The Genetics of Warfarin Dose-Response Variability in Africans: An Expert Perspective on Past, Present, and Future. , 2019, Omics : a journal of integrative biology.

[9]  T. Yadav,et al.  Conformational study of octopamine in gas phase and effect of hydrochloride. , 2019, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  D. P. Ojha,et al.  Structural description, spectral analysis and reactivity descriptors of nematogens containing cyano group- a comparative quantum chemical computational approach , 2018, Molecular Crystals and Liquid Crystals.

[11]  T. Yadav,et al.  Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl , 2018 .

[12]  V. B. Borodulin,et al.  Hemostasis Parameters and Toxic Effects of 3-Substituted and Condensed Chromen-2-Ones (Coumarins) , 2018, Pharmaceutical Chemistry Journal.

[13]  M. Ninkov,et al.  Effects of warfarin on biological processes other than haemostasis: A review. , 2018, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[14]  T. Yadav,et al.  Structural modeling and spectroscopic investigation of isolated and hydrochloride tyramine neurotransmitter , 2017 .

[15]  M. Ibrahim,et al.  Effect of Hydrated Dioxin on the Physical and Geometrical Parameters of Some Amino Acids , 2017 .

[16]  K. Sinha,et al.  Selective Pro-Apoptotic Activity of Novel 3,3′-(Aryl/Alkyl-Methylene)Bis(2-Hydroxynaphthalene-1,4-Dione) Derivatives on Human Cancer Cells via the Induction Reactive Oxygen Species , 2016, PloS one.

[17]  G. Sandford,et al.  Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity , 2015, Expert opinion on drug metabolism & toxicology.

[18]  A. Okasha,et al.  Single molecule laser spectroscopy. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[19]  G. Sandford,et al.  Targeted Fluorination of a Nonsteroidal Anti‐inflammatory Drug to Prolong Metabolic Half‐Life , 2014, ChemMedChem.

[20]  D. Du,et al.  Highly enantioselective synthesis of warfarin and its analogs catalysed by primary amine-phosphinamide bifunctional catalysts. , 2012, Organic & biomolecular chemistry.

[21]  I. Ojima Strategic Incorporation of Fluorine into Taxoid Anticancer Agents for Medicinal Chemistry and Chemical Biology Studies. , 2012, Journal of fluorine chemistry.

[22]  J. Młynarski,et al.  Efficient “on water” organocatalytic protocol for the synthesis of optically pure warfarin anticoagulant , 2011 .

[23]  I. Kostova,et al.  Molecular first order hyperpolarizability and vibrational spectral investigation of Warfarin sodium , 2010 .

[24]  F. K. Hansen,et al.  New Phenylglycine‐Derived Primary Amine Organocatalysts for the Preparation of Optically Active Warfarin , 2009 .

[25]  D. Keeling,et al.  The story of the discovery of heparin and warfarin , 2008, British journal of haematology.

[26]  F. Diederich,et al.  Fluorine in Pharmaceuticals: Looking Beyond Intuition , 2007, Science.

[27]  R. Holden,et al.  Warfarin anticoagulation in hemodialysis patients: a systematic review of bleeding rates. , 2007, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[28]  M. Pirmohamed Warfarin: almost 60 years old and still causing problems. , 2006, British journal of clinical pharmacology.

[29]  Hyunwoo Kim,et al.  Substrate-directed stereoselectivity in vicinal diamine-catalyzed synthesis of warfarin. , 2006, Organic letters.

[30]  M. Friedman,et al.  Patterns of use of antithrombotic therapy and quality of anticoagulation among patients with non‐valvular atrial fibrillation in clinical practice , 2006, International journal of clinical practice.

[31]  Samy Suissa,et al.  Warfarin use and the risk of motor vehicle crash in older drivers. , 2006, British journal of clinical pharmacology.

[32]  P. Monagle,et al.  Patient understanding of warfarin therapy: A review of education strategies , 2005, Hematology.

[33]  M. Pirmohamed,et al.  Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients , 2004, BMJ : British Medical Journal.

[34]  James Douketis,et al.  Clinical Impact of Bleeding in Patients Taking Oral Anticoagulant Therapy for Venous Thromboembolism , 2003, Annals of Internal Medicine.

[35]  K. Jørgensen,et al.  Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds and α,β-Unsaturated Ketones—A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant† , 2003 .

[36]  A. McMahon,et al.  Anticoagulation with warfarin downregulates inflammation , 2003, Journal of thrombosis and haemostasis : JTH.

[37]  A. J. Robinson,et al.  The first practical asymmetric synthesis of R and S-Warfarin , 1996 .

[38]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[39]  F. Weinhold,et al.  Natural population analysis , 1985 .

[40]  P. Friedman,et al.  Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. , 1983, Biochemistry.

[41]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[42]  H. Lutz,et al.  OH stretching frequencies of solid hydroxides and of free OH− ions , 1982 .

[43]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[44]  R. Bell,et al.  Mechanism of warfarin resistance. Warfarin and the metabolism of vitamin K 1 . , 1973, Biochemistry.

[45]  R G Bell,et al.  Mechanism of action of warfarin. Warfarin and metabolism of vitamin K 1 . , 1972, Biochemistry.

[46]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .

[47]  G. Brahmachari,et al.  Structural confirmation of biorelevant molecule N-iso-butyl, S-2-nitro-1-phenylethyl dithiocarbamate in gas phase and effect of fluorination , 2021, Chemical Physics Letters.

[48]  T. Yadav,et al.  Optimization of synephrine and its vibrational and electronic structures , 2020 .

[49]  B. K. Park,et al.  Warfarin: metabolism and mode of action. , 1988, Biochemical pharmacology.