Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer

[1]  Andrew V. Nguyen,et al.  Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. , 2000, Development.

[2]  Y. Bang,et al.  Transcriptional repression of the transforming growth factor-β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer , 1999, Oncogene.

[3]  R. Coffey,et al.  Mammary tumor suppression by transforming growth factor beta 1 transgene expression. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Corless,et al.  Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. , 2005, The Journal of clinical investigation.

[5]  R. Hynes,et al.  Thrombospondin-1 Is a Major Activator of TGF-β1 In Vivo , 1998, Cell.

[6]  J. Massagué,et al.  TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. , 2005, Cancer cell.

[7]  S. Farrington,et al.  Mutation frequency in coding and non-coding repeat sequences in mismatch repair deficient cells derived from normal human tissue , 2001, Oncogene.

[8]  U. Bogdahn,et al.  Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. , 2005, Oligonucleotides.

[9]  D. Mercola,et al.  Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Ransohoff,et al.  TGF-beta suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. , 1997, Journal of immunology.

[11]  H. Moses,et al.  Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. , 2005, Developmental biology.

[12]  U. Bogdahn,et al.  Targeted tumor therapy with the TGF-β2 antisense compound AP 12009 , 2006 .

[13]  L. Chodosh,et al.  Conditional Overexpression of Active Transforming Growth Factor β1 In vivo Accelerates Metastases of Transgenic Mammary Tumors , 2004, Cancer Research.

[14]  M. Barcellos-Hoff,et al.  Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. , 2000, Cancer research.

[15]  X. Wang,et al.  Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. , 1999, Cancer research.

[16]  Allan Balmain,et al.  TGF-β signaling in tumor suppression and cancer progression , 2001, Nature Genetics.

[17]  B. Pasche Role of transforming growth factor beta in cancer , 2001, Journal of cellular physiology.

[18]  Mahlon D. Johnson,et al.  Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. , 1993, The Journal of clinical investigation.

[19]  Allan Balmain,et al.  TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice , 1996, Cell.

[20]  Jae Youn Yi,et al.  Type I Transforming Growth Factor β Receptor Binds to and Activates Phosphatidylinositol 3-Kinase* , 2005, Journal of Biological Chemistry.

[21]  C. Hill,et al.  Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. , 2006, Cytokine & growth factor reviews.

[22]  R. Flavell,et al.  Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells , 2001, Nature Medicine.

[23]  R. Cardiff,et al.  Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease , 1992, Molecular and cellular biology.

[24]  J. Tschopp,et al.  Melanoma Cell Expression of Fas(Apo-1/CD95) Ligand: Implications for Tumor Immune Escape , 1996, Science.

[25]  Carlos L Arteaga,et al.  Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[26]  M. Karin,et al.  A role for MEK kinase 1 in TGF‐β/activin‐induced epithelium movement and embryonic eyelid closure , 2003, The EMBO journal.

[27]  H. Lodish,et al.  The Soluble Exoplasmic Domain of the Type II Transforming Growth Factor (TGF)-β Receptor , 1995, The Journal of Biological Chemistry.

[28]  Jonas Larsson,et al.  Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. , 2003, Molecular cell.

[29]  Y. Wan,et al.  TGF-β-induced p38 activation is mediated by Rac1-regulated generation of reactive oxygen species in cultured human keratinocytes , 2001 .

[30]  M. Reiss,et al.  Targeting Endogenous Transforming Growth Factor β Receptor Signaling in SMAD4-Deficient Human Pancreatic Carcinoma Cells Inhibits Their Invasive Phenotype 1 , 2004, Cancer Research.

[31]  A. Roberts,et al.  Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation. , 1988, Journal of immunology.

[32]  Jeffrey L. Wrana,et al.  TGFβ signals through a heteromeric protein kinase receptor complex , 1992, Cell.

[33]  L. Wakefield,et al.  Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. , 2002, The American journal of pathology.

[34]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[35]  A. Reith,et al.  SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. , 2002, Molecular pharmacology.

[36]  P. ten Dijke,et al.  The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. , 2006, Cancer research.

[37]  P. Schirmacher,et al.  Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development , 1998, Oncogene.

[38]  B. Hogan,et al.  Development of mammary hyperplasia and neoplasia in MMTV-TGFα transgenic mice , 1990, Cell.

[39]  Nathan A. Mundell,et al.  Transforming Growth Factor- (cid:1) Stimulates Epithelial–Mesenchymal Transformation in the Proepicardium , 2022 .

[40]  M. V. Dinther,et al.  The Tumor Suppressor Smad 4 Is Required for Transforming Growth Factor B – Induced Epithelial to Mesenchymal Transition and Bone Metastasis of Breast Cancer Cells , 2006 .

[41]  C. Nathan,et al.  Modulation of Macrophage Function by Transforming Growth Factor β, Interleukin‐4, and Interleukin‐10 a , 1993, Annals of the New York Academy of Sciences.

[42]  A. Balmain,et al.  Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. , 1995, Genes & development.

[43]  S. Wahl,et al.  TGF‐β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells , 2004, Journal of leukocyte biology.

[44]  T. Witham,et al.  Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcomain vivo , 2003, Journal of Neuro-Oncology.

[45]  Y. Shyr,et al.  Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. , 2003, The American journal of pathology.

[46]  Yue Zhang,et al.  Regulation of the Polarity Protein Par6 by TGFß Receptors Controls Epithelial Cell Plasticity , 2005, Science.

[47]  D. Ma,et al.  Transforming growth factor-beta down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. , 1995, Immunology.

[48]  R. Flavell,et al.  Transforming growth factor-β in T-cell biology , 2002, Nature Reviews Immunology.

[49]  C. Arteaga,et al.  Evidence for a positive role of transforming growth factor‐β in human breast cancer cell tumorigenesis , 1993, Journal of cellular biochemistry. Supplement.

[50]  A. Balmain,et al.  Altered epidermal cell growth control in vivo by inducible expression of transforming growth factor beta 1 in the skin of transgenic mice. , 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[51]  M. Barcellos-Hoff,et al.  Proliferation of Estrogen Receptor- (cid:1) -Positive Mammary Epithelial Cells Is Restrained by Transforming Growth Factor- (cid:2) 1 in Adult Mice , 2005 .

[52]  M. Freedman,et al.  Transforming growth factor-β1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures , 1992, Brain Research.

[53]  J. Dasch,et al.  Monoclonal antibodies recognizing transforming growth factor-beta. Bioactivity neutralization and transforming growth factor beta 2 affinity purification. , 1989, Journal of immunology.

[54]  M. Sporn,et al.  Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[55]  I. Figari,et al.  The autocrine production of transforming growth factor-beta 1 during lymphocyte activation. A study with a monoclonal antibody-based ELISA. , 1990, Journal of immunology.

[56]  V. Fadok,et al.  Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. , 1998, The Journal of clinical investigation.

[57]  G. Proetzel,et al.  Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease , 1992, Nature.

[58]  K. Frei,et al.  Expression of TGF-beta 2 in human glioblastoma: a role in resistance to immune rejection? , 1991, Ciba Foundation symposium.

[59]  D. Kletsas,et al.  TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. , 2006, Cellular signalling.

[60]  R. Weinberg,et al.  Expression cloning and characterization of the TGF-β type III receptor , 1991, Cell.

[61]  K. Irie,et al.  Identification of a Member of the MAPKKK Family as a Potential Mediator of TGF-β Signal Transduction , 1995, Science.

[62]  M. Matzuk,et al.  Genetic models for transforming growth factor β superfamily signaling in ovarian follicle development , 2004, Molecular and Cellular Endocrinology.

[63]  R. Keri,et al.  Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-β signaling in ErbB2/Neu-induced tumors from transgenic mice , 2005, Oncogene.

[64]  R. Cardiff,et al.  Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Kinzler,et al.  Cancer genes and the pathways they control , 2004, Nature Medicine.

[66]  M. Reiss,et al.  Selective inhibitors of type I receptor kinase block cellular transforming growth factor-beta signaling. , 2004, Biochemical pharmacology.

[67]  S. A. Watkins,et al.  Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. , 2005, Biochemistry.

[68]  D. Adams,et al.  Transforming growth factor-beta induces human T lymphocyte migration in vitro. , 1991, Journal of immunology.

[69]  Robert D. Cardiff,et al.  Selective Evolution of Stromal Mesenchyme with p53 Loss in Response to Epithelial Tumorigenesis , 2005, Cell.

[70]  R. Ignotz,et al.  TGF‐beta inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells , 1992, Journal of cellular physiology.

[71]  Natasa Przulj,et al.  High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells , 2005, Science.

[72]  Martin A. Nowak,et al.  The significance of unstable chromosomes in colorectal cancer , 2003, Nature Reviews Cancer.

[73]  R. Weinberg,et al.  Expression cloning of the TGF-β type II receptor, a functional transmembrane serine/threonine kinase , 1992, Cell.

[74]  M. Kitamura,et al.  Identification of an inhibitor targeting macrophage production of monocyte chemoattractant protein-1 as TGF-beta 1. , 1997, Journal of immunology.

[75]  R. Derynck,et al.  TGF-β signaling in cancer – a double-edged sword , 2001 .

[76]  K. Malcolm,et al.  Cross-talk between ERK and p38 MAPK Mediates Selective Suppression of Pro-inflammatory Cytokines by Transforming Growth Factor-β* , 2002, The Journal of Biological Chemistry.

[77]  G. Nabel,et al.  Regulation of the proinflammatory effects of Fas ligand (CD95L). , 1998, Science.

[78]  D. Constam,et al.  Modulation of the immune response by transforming growth factor beta. , 1992, International archives of allergy and immunology.

[79]  R. Derynck,et al.  Expression of a dominant-negative type II transforming growth factor β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition , 1997 .

[80]  K. Wagner,et al.  Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression , 2005, Oncogene.

[81]  WM Kast,et al.  Effects of TGF-β on the immune system: implications for cancer immunotherapy , 1999, Leukemia.

[82]  C. Heldin,et al.  Smad7 is required for TGF-β-induced activation of the small GTPase Cdc42 , 2004, Journal of Cell Science.

[83]  M. Reiss TGF- and cancer , 1999 .

[84]  Brian Bierie,et al.  Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. , 2005, Cancer research.

[85]  R. Field,et al.  A fully human antibody neutralising biologically active human TGFbeta2 for use in therapy. , 1999, Journal of immunological methods.

[86]  B. O’Malley,et al.  Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[87]  T. Lee,et al.  Transforming growth factor beta 1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathways. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[89]  R. Alon,et al.  TGF‐β1 enhances SDF‐1α‐induced chemotaxis and homing of naive T cells by up‐regulating CXCR4 expression and downstream cytoskeletal effector molecules , 2002, European journal of immunology.

[90]  K. Irie,et al.  TAB1: An Activator of the TAK1 MAPKKK in TGF-β Signal Transduction , 1996, Science.

[91]  S. Rosenberg,et al.  TGF-β1 Attenuates the Acquisition and Expression of Effector Function by Tumor Antigen-Specific Human Memory CD8 T Cells , 2005, Journal of Immunology.

[92]  H. Lodish,et al.  Oligomeric Structure of Type I and Type II Transforming Growth Factor β Receptors: Homodimers Form in the ER and Persist at the Plasma Membrane , 1998, The Journal of cell biology.

[93]  R. Cardiff,et al.  Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[94]  V. Calvert,et al.  Role of Tyrosine Phosphorylation in Ligand-independent Sequestration of CXCR4 in Human Primary Monocytes-Macrophages* , 2001, The Journal of Biological Chemistry.

[95]  J. Crow Early American genetics journals , 2005, Nature Reviews Genetics.

[96]  R. Derynck,et al.  TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors , 1994, The Journal of cell biology.

[97]  C. Arteaga,et al.  Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases , 2002 .

[98]  L. Hennighausen,et al.  Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. , 1995, Developmental biology.

[99]  L. Wakefield,et al.  TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression , 2003 .

[100]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[101]  C. Boulanger,et al.  Reducing mammary cancer risk through premature stem cell senescence , 2001, Oncogene.

[102]  Ximing J. Yang,et al.  Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. , 2005, Cancer research.

[103]  Dana M. Brantley-Sieders,et al.  Increased Malignancy of Neu-Induced Mammary Tumors Overexpressing Active Transforming Growth Factor β1 , 2003, Molecular and Cellular Biology.

[104]  N. Kaminski,et al.  The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. , 1999, Cell.

[105]  S. Ledbetter,et al.  Minimal Effects on Immune Parameters Following Chronic Anti-TGF-β Monoclonal Antibody Administration to Normal Mice , 2003, Immunopharmacology and immunotoxicology.

[106]  K. M. Mulder,et al.  Activation of p21ras by transforming growth factor beta in epithelial cells. , 1992, The Journal of biological chemistry.

[107]  V. Fadok,et al.  Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells. , 1999, Journal of immunology.

[108]  H. Moses,et al.  Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. , 1999, Molecular biology of the cell.

[109]  Xiao‐Jing Wang,et al.  Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGFβRII , 2000, Oncogene.

[110]  P. Pandolfi,et al.  Cytoplasmic PML function in TGF-β signalling , 2004, Nature.

[111]  Robert A. Weinberg,et al.  TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation , 2001, Nature Cell Biology.

[112]  C. Heldin,et al.  Non-Smad TGF-β signals , 2005, Journal of Cell Science.

[113]  J. Massagué,et al.  Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer , 2003, Nature Reviews Cancer.

[114]  R. Derynck,et al.  Ligand-independent Activation of Transforming Growth Factor (TGF) β Signaling Pathways by Heteromeric Cytoplasmic Domains of TGF-β Receptors* , 1996, The Journal of Biological Chemistry.

[115]  David Botstein,et al.  Diversity, topographic differentiation, and positional memory in human fibroblasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[116]  H. Lodish,et al.  The transforming growth factor beta receptors types I, II, and III form hetero-oligomeric complexes in the presence of ligand. , 1993, The Journal of biological chemistry.

[117]  T. Witham,et al.  Expression of a Soluble Transforming Growth Factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo , 2004, Journal of Neuro-Oncology.

[118]  S. Markowitz,et al.  Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis , 2000 .

[119]  Takeshi Imamura,et al.  The ALK‐5 inhibitor A‐83‐01 inhibits Smad signaling and epithelial‐to‐mesenchymal transition by transforming growth factor‐β , 2005, Cancer science.

[120]  F. López‐Casillas,et al.  Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. , 2002, Cancer research.

[121]  B. Weeks,et al.  Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. , 2001, Cancer research.

[122]  A. Geiser,et al.  Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. , 1993, The EMBO journal.

[123]  B. Hogan,et al.  Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. , 1993, Genes & development.

[124]  A. Roberts,et al.  SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. , 2004, Molecular pharmacology.

[125]  M. Shaw,et al.  Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation. , 2000, Developmental biology.

[126]  J. Massagué How cells read TGF-beta signals. , 2000, Nature reviews. Molecular cell biology.

[127]  Dennis C. Sgroi,et al.  Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion , 2005, Cell.

[128]  P. Khaw,et al.  Human anti-transforming growth factor-beta2 antibody: a new glaucoma anti-scarring agent. , 1999, Investigative ophthalmology & visual science.

[129]  S. Wahl,et al.  TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression , 2003 .

[130]  P. Dijke,et al.  TGF-h receptor function in the endothelium , 2005 .

[131]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[132]  M. Washington,et al.  TGF-ß Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia , 2004, Science.

[133]  S. Hayward,et al.  Malignant transformation in a nontumorigenic human prostatic epithelial cell line. , 2001, Cancer research.

[134]  H. Beug,et al.  TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis , 1998, Current Biology.

[135]  S. Karlsson,et al.  Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. , 2002, Blood.

[136]  M. O’Connor-McCourt,et al.  Expression of TGF‐β type II receptor antisense RNA impairs TGF‐β signaling in vitro and promotes mammary gland differentiation in vivo , 2003, International journal of cancer.

[137]  M. Goumans,et al.  Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. , 2003, Trends in cardiovascular medicine.

[138]  L. Wakefield,et al.  Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. , 2002, The Journal of clinical investigation.

[139]  R. Flavell,et al.  Abrogation of TGFβ Signaling in T Cells Leads to Spontaneous T Cell Differentiation and Autoimmune Disease , 2000 .

[140]  I. Stamenkovic,et al.  Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. , 2000, Genes & development.

[141]  J. Massagué,et al.  How cells read TGF-β signals , 2000, Nature Reviews Molecular Cell Biology.

[142]  M. Barcellos-Hoff,et al.  Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression , 2006, Oncogene.

[143]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[144]  S. Murphy,et al.  Cell-Type-Specific Activation of PAK2 by Transforming Growth Factor β Independent of Smad2 and Smad3 , 2003, Molecular and Cellular Biology.

[145]  M. Sporn,et al.  Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[146]  L. Sun,et al.  A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. , 1999, Cancer research.

[147]  François Vaillant,et al.  Generation of a functional mammary gland from a single stem cell , 2006, Nature.

[148]  N. Kaminski,et al.  A Mechanism for Regulating Pulmonary Inflammation and Fibrosis: The Integrin αvβ6 Binds and Activates Latent TGF β1 , 1999, Cell.

[149]  T. Utsunomiya,et al.  Clinical significance of the expression of activin A in esophageal carcinoma. , 2003, International journal of oncology.

[150]  H. Moses,et al.  Transforming growth factor beta 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. , 1993, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[151]  K. Black,et al.  Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. , 1998, Neurological research.

[152]  M. Smyth,et al.  CD4+CD25+ T Regulatory Cells Suppress NK Cell-Mediated Immunotherapy of Cancer1 , 2006, The Journal of Immunology.

[153]  A. Balmain,et al.  TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrest , 2000 .

[154]  Jonathan M. Yingling,et al.  Development of TGF-β signalling inhibitors for cancer therapy , 2004, Nature Reviews Drug Discovery.

[155]  H. Moses,et al.  Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. , 2001, Molecular biology of the cell.

[156]  W. Grady Genomic instability and colon cancer , 2004, Cancer and Metastasis Reviews.

[157]  Lothar Hennighausen,et al.  Information networks in the mammary gland , 2005, Nature Reviews Molecular Cell Biology.

[158]  M. Weller,et al.  SD-208, a Novel Transforming Growth Factor β Receptor I Kinase Inhibitor, Inhibits Growth and Invasiveness and Enhances Immunogenicity of Murine and Human Glioma Cells In vitro and In vivo , 2004, Cancer Research.

[159]  R. Kalluri,et al.  Integrin α1β1 and Transforming Growth Factor-β1 Play Distinct Roles in Alport Glomerular Pathogenesis and Serve as Dual Targets for Metabolic Therapy , 2000 .

[160]  Richard N. Mitchell,et al.  Essential Role for Smad3 in Regulating MCP-1 Expression and Vascular Inflammation , 2004, Circulation Research.

[161]  H. Lodish,et al.  Signaling by chimeric erythropoietin‐TGF‐beta receptors: homodimerization of the cytoplasmic domain of the type I TGF‐beta receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. , 1996, The EMBO journal.

[162]  S. Hayward,et al.  Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks , 2005, Oncogene.