Toward High Resolution, Ladar-Quality 3-D World Models Using Ladar-Stereo Data Integration and Fusion

Abstract : An approach and architecture to incorporate data integration and fusion of laser radar (ladar) and stereo data to generate high resolution, ladar-quality three-dimensional world models is described. Our primary interest involves complex environments that have proved difficult for traditional stereo algorithms to produce accurate information. The principal novelty of our work is the use of ladar information as a priori disparity information. Initial results verify the validity of the approach. Improvement in the identification of occluded regions and reduction of the error in disparities are observed.

[1]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Vladimir Kolmogorov,et al.  Generalized Multi-camera Scene Reconstruction Using Graph Cuts , 2003, EMMCVPR.

[3]  L. Davis,et al.  Window-based, discontinuity preserving stereo , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[4]  Takeo Kanade,et al.  A Cooperative Algorithm for Stereo Matching and Occlusion Detection , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Olga Veksler,et al.  A New Algorithm for Energy Minimization with Discontinuities , 1999, EMMCVPR.

[6]  Stefan Scherer,et al.  The discriminatory power of ordinal measures - towards a new coefficient , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[7]  Reinhard Koch,et al.  A simple and efficient rectification method for general motion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[8]  Long Quan,et al.  Region-based progressive stereo matching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[9]  Shigeru Kimura,et al.  A convolver-based real-time stereo machine (SAZAN) , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Aggelos K. Katsaggelos,et al.  Disparity estimation with modeling of occlusion and object orientation , 1998, Electronic Imaging.

[11]  Olga Veksler,et al.  Fast variable window for stereo correspondence using integral images , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Li Hong,et al.  Segment-based stereo matching using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  Tommy Chang,et al.  Fusing Ladar and Color Image Information for Mobile Robot Feature Detection and Tracking , 2002 .

[15]  Ray Jarvis,et al.  3D Vision for Large-Scale Outdoor Environments , 2002 .

[16]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[17]  J.K. Aggarwal,et al.  Computing stereo correspondences in the presence of narrow occluding objects , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Heiko Hirschmüller,et al.  Improvements in real-time correlation-based stereo vision , 2001, CVPR 2001.

[20]  Sang Hwa Lee,et al.  Hierarchical stochastic diffusion for disparity estimation , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[21]  Olga Veksler,et al.  Stereo matching by compact windows via minimum ratio cycle , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[24]  Reinhard Männer,et al.  Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation , 2004, International Journal of Computer Vision.

[25]  李幼升,et al.  Ph , 1989 .

[26]  Carlo Tomasi,et al.  Surfaces with occlusions from layered stereo , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  William F. Oberle,et al.  LADAR-Camera Registration Using Object Pose and Camera Calibration Algorithms , 2004 .

[29]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[30]  Richard Szeliski,et al.  High-accuracy stereo depth maps using structured light , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[31]  Paulo Dias,et al.  Fusion of intensity and range data for improved 3D models , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[32]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[33]  Volker Graefe,et al.  Machine Vision for Intelligent Robots , 1998, MVA.

[34]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[35]  Kevin Nickels,et al.  Fusion of Lidar and Stereo Range for Mobile Robots , 2003 .

[36]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[37]  Larry S. Davis,et al.  Uncalibrated stereo rectification for automatic 3D surveillance , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[38]  Mark D. Elstrom A STEREO-BASED TECHNIQUE FOR THE REGISTRATION OF COLOR AND LADAR IMAGES , 1998 .

[39]  William F. Oberle,et al.  Three-Dimensional Stereo Reconstruction and Sensor Registration with Application to the Development of a Multi-Sensor Database , 2002 .

[40]  Nicu Sebe,et al.  Toward Improved Ranking Metrics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Peter I. Corke,et al.  Quantitative Evaluation of Matching Methods and Validity Measures for Stereo Vision , 2001, Int. J. Robotics Res..

[42]  Juliang Shao Combination of stereo, motion and rendering for 3D footage display , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[43]  Richard Szeliski,et al.  A layered approach to stereo reconstruction , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[44]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[46]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[47]  Margrit Gelautz,et al.  A layered stereo algorithm using image segmentation and global visibility constraints , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[48]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[49]  Aggelos K. Katsaggelos,et al.  Dense Disparity Estimation with a Divide-and-Conquer Disparity Space Image Technique , 1999, IEEE Trans. Multim..

[50]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[51]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[52]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[53]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[54]  H. Mayer ANALYSIS OF MEANS TO IMPROVE COOPERATIVE DISPARITY ESTIMATION , 2003 .

[55]  Panos Liatsis,et al.  A collective-based adaptive symbiotic model for surface reconstruction in area-based stereo , 2003, IEEE Trans. Evol. Comput..

[56]  Charles T. Loop,et al.  Computing rectifying homographies for stereo vision , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[57]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Carlo Tomasi,et al.  Multiway cut for stereo and motion with slanted surfaces , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[59]  Changming Sun,et al.  Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques , 2002, International Journal of Computer Vision.

[60]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1999, International Journal of Computer Vision.