DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching.

Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure-switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.

[1]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[2]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[3]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[4]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[5]  F. Coutrot,et al.  Synthesis of a pH-Sensitive Hetero[4]Rotaxane Molecular Machine that Combines [c2]Daisy and [2]Rotaxane Arrangements. , 2016, Chemistry.

[6]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[7]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[8]  Itamar Willner,et al.  Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. , 2014, Accounts of chemical research.

[9]  Christof M Niemeyer,et al.  Functionalization of DNA nanostructures with proteins. , 2011, Chemical Society reviews.

[10]  Itamar Willner,et al.  Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. , 2016, Journal of the American Chemical Society.

[11]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[12]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[13]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[14]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[15]  Ian Thomas. Harrison,et al.  Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .

[16]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[17]  Michael Famulok,et al.  Daisy Chain Rotaxanes Made from Interlocked DNA Nanostructures , 2016, Angewandte Chemie.

[18]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[19]  E. Sevick,et al.  Threading a Ring or Tube onto a Rod: An Entropically Rare Event. , 2016, Nano letters.

[20]  Julián Valero,et al.  Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. , 2014, Angewandte Chemie.

[21]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[22]  Hao Yan,et al.  DNA Nanostructures as Programmable Biomolecular Scaffolds. , 2015, Bioconjugate chemistry.

[23]  Friedrich C Simmel,et al.  Long-range movement of large mechanically interlocked DNA nanostructures , 2016, Nature Communications.

[24]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[25]  M. Famulok,et al.  Single‐Stranded Tile Stoppers for Interlocked DNA Architectures , 2016, Chembiochem : a European journal of chemical biology.

[26]  M. Famulok,et al.  Konstruktionsprinzip für DNA‐Rotaxane mit mechanisch versteifter PX100‐Achse , 2012 .

[27]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[28]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[29]  Chuyang Cheng,et al.  Wholly Synthetic Molecular Machines. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  C. Schalley,et al.  On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. , 2001, Accounts of chemical research.