Correlation versus hybridization gap in CaMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}2Bi\do
暂无分享,去创建一个
P. Rosa | C. Lane | M. M. Piva | Jian-Xin Zhu
[1] C. Lane,et al. Ab intio description of the electronic structure of high-temperature cuprate superconductors: A Comparative Density Functional Study , 2020 .
[2] C. Lane,et al. First-principles calculation of spin and orbital contributions to magnetically ordered moments in Sr2IrO4 , 2020, 2004.04759.
[3] C. Lane,et al. Ab initio description of the Bi2Sr2CaCu2O8+δ electronic structure , 2020, 2003.04034.
[4] J. Perdew,et al. Competing stripe and magnetic phases in the cuprates from first principles , 2019, Proceedings of the National Academy of Sciences.
[5] G. Murtaza,et al. First-principles calculations of electronic and magnetic properties of XMn2Y2 (X = Ca, Sr; Y = Sb, Bi) compounds , 2019, International Journal of Modern Physics B.
[6] M. Nicklas,et al. Strange-metal behaviour in a pure ferromagnetic Kondo lattice , 2019, Nature.
[7] Z. Fisk,et al. Putative hybridization gap in CaMn2Bi2 under applied pressure , 2019, Physical Review B.
[8] Jinguang Cheng,et al. Pressure-Induced Large Volume Collapse, Plane-to-Chain, Insulator to Metal Transition in CaMn2Bi2. , 2019, Inorganic chemistry.
[9] G. Jackeli,et al. Concept and realization of Kitaev quantum spin liquids , 2019, Nature Reviews Physics.
[10] C. Felser,et al. A complete catalogue of high-quality topological materials , 2019, Nature.
[11] A. Zunger,et al. Origin of band gaps in 3d perovskite oxides , 2019, Nature Communications.
[12] C. Lane,et al. Antiferromagnetic ground state of La2CuO4 : A parameter-free ab initio description , 2018, Physical Review B.
[13] Z. Fang,et al. Catalogue of topological electronic materials , 2018, Nature.
[14] L. Taillefer,et al. The Remarkable Underlying Ground States of Cuprate Superconductors , 2018, Annual Review of Condensed Matter Physics.
[15] T. Hatano,et al. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn 2 Bi 2 , 2018 .
[16] C. Lane,et al. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors , 2018 .
[17] A. Kirov,et al. Crystallography online: Bilbao Crystallographic Server , 2017 .
[18] W. Evans,et al. Anomalous elastic properties across the γ to α volume collapse in cerium , 2017, Nature Communications.
[19] D. Johnston,et al. Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals , 2017, 1710.05976.
[20] Barry Bradlyn,et al. Graph theory data for topological quantum chemistry. , 2017, Physical review. E.
[21] C. Felser,et al. Double crystallographic groups and their representations on the Bilbao Crystallographic Server , 2017, 1706.09272.
[22] M. I. Aroyo,et al. Topological quantum chemistry , 2017, Nature.
[23] Hong Jiang,et al. The local projection in the density functional theory plus U approach: A critical assessment. , 2016, The Journal of chemical physics.
[24] Hsin Lin,et al. Colloquium : Topological band theory , 2016, 1603.03576.
[25] X. Chong,et al. Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb) , 2016, Scientific Reports.
[26] M. McGuire,et al. Short- and long-range magnetic order in LaMnAsO , 2015, 1512.07085.
[27] Q. Gibson,et al. Magnetic and electronic properties of CaMn 2 Bi 2 : A possible hybridization gap semiconductor , 2015 .
[28] K. Matsubayashi,et al. Pressure induced superconductivity on the border of magnetic order in MnP. , 2014, Physical review letters.
[29] Kenan Song,et al. Limitation and extrapolation correction of the GGA + U formalism: a case study of Nb-doped anatase TiO2 , 2013 .
[30] H. Hosono,et al. From antiferromagnetic insulator to ferromagnetic metal: Effects of hydrogen substitution in LaMnAsO , 2013 .
[31] H. Mao,et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides , 2012, Nature.
[32] J. Bao,et al. Insulator-to-metal transition and large thermoelectric effect in La1−xSrxMnAsO , 2011, 1111.2232.
[33] N. Hollmann,et al. From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO , 2011, Proceedings of the National Academy of Sciences.
[34] D. Basov,et al. Gap states in insulating LaMnPO 1 − x F x ( x = 0 –0.3) , 2011, 1109.5390.
[35] G. Stewart. Superconductivity in iron compounds , 2011, 1106.1618.
[36] H. Wen,et al. Materials and Novel Superconductivity in Iron Pnictide Superconductors , 2011 .
[37] T. Kamiya,et al. Antiferromagnetic bipolar semiconductor LaMnPO with ZrCuSiAs-type structure , 2009 .
[38] Hideo Hosono,et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .
[39] Z. Ren,et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.
[40] Hideo Hosono,et al. Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.
[41] Hans Wondratschek,et al. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.
[42] G. Madsen,et al. Charge order in magnetite. An LDA+U study , 2004, cond-mat/0412560.
[43] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[44] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[45] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[46] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[47] Hafner,et al. Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.
[48] Fisk,et al. Hybridization gap in Ce3Bi4Pt3. , 1990, Physical review. B, Condensed matter.
[49] R. Hoffmann,et al. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides , 1984 .
[50] K. Kugel,et al. The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .
[51] H. Schäfer,et al. Neue intermetallische Verbindungen im anti-Ce2O2S-Strukturtyp. / New Intermetallic Compounds in the anti-Ce2O2S-Structure Type , 1976 .
[52] J. Wilson,et al. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .
[53] Chow,et al. High Pressure Kondo Insulator-Semimetal Transition in Ce 3 Bi 4 Pt 3 , 2019 .
[54] K. Schwarz,et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .
[55] E. Lyon,et al. Topological band theory , 2015 .
[56] Hans Wondratschek,et al. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .
[57] S. Hainsworth,et al. A CRITICAL ASSESSMENT , 2014 .
[58] A. Prodan,et al. Peierls distortions in NbS3 and NbSe3 , 1980 .
[59] K. Lee,et al. Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .