Correlation versus hybridization gap in CaMn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}2Bi\do

We study the interplay between electronic correlations and hybridization in the low‑energy electronic structure of CaMn 2 Bi 2 , a candidate hybridization‑gap semiconductor. By employing a DFT+ U approach we find both the antiferromagnetic Néel order and band gap in good agreement with the corresponding experimental values. Under hydrostatic pressure, we find a crossover from hybridization gap to charge‑transfer insulting physics due to the delicate balance of hybridization and correlations. Increasing the pressure above P c = 4 GPa we find a simultaneous pressure‑induced volume collapse, plane‑to‑chain, insulator to metal transition. Finally, we have also analyzed the topology in the antiferromagnetic CaMn 2 Bi 2 for all pressures studied. The electronic structure of fermionic correlated systems is driven by the competition between the tendencies of the electron to spread out as a wave and to localize as a particle, the latter usually accompanied with magnetism. That is, the interplay of the spin and charge degrees of freedom is a central issue 1 . Layered two-dimensional (2D) materials provide a unique platform for studying this dual nature of the electronic states which produces rich phase diagrams including high temperature superconductivity 2–4 , non-trivial topological insulating and semi-metallic phases 5 , quantum spin liquid states 6 , and strange metal behavior 7 . In

[1]  C. Lane,et al.  Ab intio description of the electronic structure of high-temperature cuprate superconductors: A Comparative Density Functional Study , 2020 .

[2]  C. Lane,et al.  First-principles calculation of spin and orbital contributions to magnetically ordered moments in Sr2IrO4 , 2020, 2004.04759.

[3]  C. Lane,et al.  Ab initio description of the Bi2Sr2CaCu2O8+δ electronic structure , 2020, 2003.04034.

[4]  J. Perdew,et al.  Competing stripe and magnetic phases in the cuprates from first principles , 2019, Proceedings of the National Academy of Sciences.

[5]  G. Murtaza,et al.  First-principles calculations of electronic and magnetic properties of XMn2Y2 (X = Ca, Sr; Y = Sb, Bi) compounds , 2019, International Journal of Modern Physics B.

[6]  M. Nicklas,et al.  Strange-metal behaviour in a pure ferromagnetic Kondo lattice , 2019, Nature.

[7]  Z. Fisk,et al.  Putative hybridization gap in CaMn2Bi2 under applied pressure , 2019, Physical Review B.

[8]  Jinguang Cheng,et al.  Pressure-Induced Large Volume Collapse, Plane-to-Chain, Insulator to Metal Transition in CaMn2Bi2. , 2019, Inorganic chemistry.

[9]  G. Jackeli,et al.  Concept and realization of Kitaev quantum spin liquids , 2019, Nature Reviews Physics.

[10]  C. Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[11]  A. Zunger,et al.  Origin of band gaps in 3d perovskite oxides , 2019, Nature Communications.

[12]  C. Lane,et al.  Antiferromagnetic ground state of La2CuO4 : A parameter-free ab initio description , 2018, Physical Review B.

[13]  Z. Fang,et al.  Catalogue of topological electronic materials , 2018, Nature.

[14]  L. Taillefer,et al.  The Remarkable Underlying Ground States of Cuprate Superconductors , 2018, Annual Review of Condensed Matter Physics.

[15]  T. Hatano,et al.  Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn 2 Bi 2 , 2018 .

[16]  C. Lane,et al.  An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors , 2018 .

[17]  A. Kirov,et al.  Crystallography online: Bilbao Crystallographic Server , 2017 .

[18]  W. Evans,et al.  Anomalous elastic properties across the γ to α volume collapse in cerium , 2017, Nature Communications.

[19]  D. Johnston,et al.  Antiferromagnetism in semiconducting SrMn2Sb2 and BaMn2Sb2 single crystals , 2017, 1710.05976.

[20]  Barry Bradlyn,et al.  Graph theory data for topological quantum chemistry. , 2017, Physical review. E.

[21]  C. Felser,et al.  Double crystallographic groups and their representations on the Bilbao Crystallographic Server , 2017, 1706.09272.

[22]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[23]  Hong Jiang,et al.  The local projection in the density functional theory plus U approach: A critical assessment. , 2016, The Journal of chemical physics.

[24]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[25]  X. Chong,et al.  Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb) , 2016, Scientific Reports.

[26]  M. McGuire,et al.  Short- and long-range magnetic order in LaMnAsO , 2015, 1512.07085.

[27]  Q. Gibson,et al.  Magnetic and electronic properties of CaMn 2 Bi 2 : A possible hybridization gap semiconductor , 2015 .

[28]  K. Matsubayashi,et al.  Pressure induced superconductivity on the border of magnetic order in MnP. , 2014, Physical review letters.

[29]  Kenan Song,et al.  Limitation and extrapolation correction of the GGA + U formalism: a case study of Nb-doped anatase TiO2 , 2013 .

[30]  H. Hosono,et al.  From antiferromagnetic insulator to ferromagnetic metal: Effects of hydrogen substitution in LaMnAsO , 2013 .

[31]  H. Mao,et al.  Re-emerging superconductivity at 48 kelvin in iron chalcogenides , 2012, Nature.

[32]  J. Bao,et al.  Insulator-to-metal transition and large thermoelectric effect in La1−xSrxMnAsO , 2011, 1111.2232.

[33]  N. Hollmann,et al.  From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO , 2011, Proceedings of the National Academy of Sciences.

[34]  D. Basov,et al.  Gap states in insulating LaMnPO 1 − x F x ( x = 0 –0.3) , 2011, 1109.5390.

[35]  G. Stewart Superconductivity in iron compounds , 2011, 1106.1618.

[36]  H. Wen,et al.  Materials and Novel Superconductivity in Iron Pnictide Superconductors , 2011 .

[37]  T. Kamiya,et al.  Antiferromagnetic bipolar semiconductor LaMnPO with ZrCuSiAs-type structure , 2009 .

[38]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[39]  Z. Ren,et al.  Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO , 2008, 0804.4290.

[40]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[41]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[42]  G. Madsen,et al.  Charge order in magnetite. An LDA+U study , 2004, cond-mat/0412560.

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[48]  Fisk,et al.  Hybridization gap in Ce3Bi4Pt3. , 1990, Physical review. B, Condensed matter.

[49]  R. Hoffmann,et al.  Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides , 1984 .

[50]  K. Kugel,et al.  The Jahn-Teller effect and magnetism: transition metal compounds , 1982 .

[51]  H. Schäfer,et al.  Neue intermetallische Verbindungen im anti-Ce2O2S-Strukturtyp. / New Intermetallic Compounds in the anti-Ce2O2S-Structure Type , 1976 .

[52]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[53]  Chow,et al.  High Pressure Kondo Insulator-Semimetal Transition in Ce 3 Bi 4 Pt 3 , 2019 .

[54]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[55]  E. Lyon,et al.  Topological band theory , 2015 .

[56]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[57]  S. Hainsworth,et al.  A CRITICAL ASSESSMENT , 2014 .

[58]  A. Prodan,et al.  Peierls distortions in NbS3 and NbSe3 , 1980 .

[59]  K. Lee,et al.  Infinite-layer LaNiO 2 : Ni 1 + is , 2022 .