Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis

[1]  P. Xu,et al.  Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1 , 2015, Arthritis Research & Therapy.

[2]  K. Nakahira,et al.  The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. , 2015, Antioxidants & redox signaling.

[3]  E. Cummins,et al.  Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[4]  F. Ciccia,et al.  Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)‐1β via the nucleotide‐binding domain and leucine‐rich repeat containing family pyrin 3(NLRP3)‐inflammasome activation: a possible implication for therapeutic decision in , 2015, Clinical and experimental immunology.

[5]  D. Veale,et al.  Polyfunctional, Pathogenic CD161+ Th17 Lineage Cells Are Resistant to Regulatory T Cell–Mediated Suppression in the Context of Autoimmunity , 2015, The Journal of Immunology.

[6]  F. D’Acquisto,et al.  Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions , 2015, PLoS biology.

[7]  T. Teramura,et al.  Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells , 2015, FEBS open bio.

[8]  R. Giacomelli,et al.  AB0051 Monocytes from Patients with Rheumatoid Arthritis and Type 2 Diabetes Mellitus Display an Increased Production of IL-1β Via the NLRP3-Inflammasome Activation. A Possible Implication for Therapeutic Decision in These Patients , 2015 .

[9]  D. Veale,et al.  Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. , 2015, Annals of the rheumatic diseases.

[10]  Z. Fayad,et al.  HIF-1&agr; and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[11]  Rick B. Vega,et al.  Maintaining ancient organelles: mitochondrial biogenesis and maturation. , 2015, Circulation research.

[12]  C. Kim,et al.  HMGB1 induces angiogenesis in rheumatoid arthritis via HIF‐1α activation , 2015, European journal of immunology.

[13]  De-Pei Li,et al.  The protective effects of chronic intermittent hypobaric hypoxia pretreatment against collagen-induced arthritis in rats , 2015, Journal of Inflammation.

[14]  Huimin Yan,et al.  Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. , 2015, Journal of rheumatic diseases and treatment.

[15]  J. Pelletier,et al.  Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis , 2014, Annals of the rheumatic diseases.

[16]  Rick B. Vega,et al.  Mitochondrial Biogenesis and Maturation , 2015 .

[17]  David J Brayden,et al.  Redox‐Mediated Angiogenesis in the Hypoxic Joint of Inflammatory Arthritis , 2014, Arthritis & rheumatology.

[18]  I. Boldogh,et al.  Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. , 2014, Free radical biology & medicine.

[19]  Chun-Hao Tsai,et al.  CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression , 2014, Cell Death and Disease.

[20]  E. Morand,et al.  A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis , 2014, British journal of pharmacology.

[21]  Min-jung Park,et al.  Metformin Attenuates Experimental Autoimmune Arthritis through Reciprocal Regulation of Th17/Treg Balance and Osteoclastogenesis , 2014, Mediators of inflammation.

[22]  F. Blanco,et al.  Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. , 2014, Rheumatology.

[23]  Jia Liu,et al.  Mitochondrial DNA induces inflammation and increases TLR9/NF-κB expression in lung tissue , 2014, International journal of molecular medicine.

[24]  R. Gay,et al.  Dual Role of Autophagy in Stress‐Induced Cell Death in Rheumatoid Arthritis Synovial Fibroblasts , 2014, Arthritis & rheumatology.

[25]  Hiroshi Takayanagi,et al.  Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis , 2013, Nature Medicine.

[26]  R. Mu,et al.  Hypoxia and hypoxia-inducible factor-1α provoke toll-like receptor signalling-induced inflammation in rheumatoid arthritis , 2013, Annals of the rheumatic diseases.

[27]  Hongbin Li,et al.  Avastin Exhibits Therapeutic Effects on Collagen-Induced Arthritis in Rat Model , 2013, Inflammation.

[28]  N. Prabhakar Sensing hypoxia: physiology, genetics and epigenetics , 2013, The Journal of physiology.

[29]  M. Filippi,et al.  Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM‐1 expression , 2013, European journal of immunology.

[30]  Guoqing Li,et al.  Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. , 2013, Molecular immunology.

[31]  D. Ye,et al.  Molecular biology for formyl peptide receptors in human diseases , 2013, Journal of Molecular Medicine.

[32]  H. Ozkol,et al.  Importance of Oxidative Stress in Patient with Deep Vein Thrombosis , 2013 .

[33]  A. Eva,et al.  The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. , 2013, Immunobiology.

[34]  J. Hamilton,et al.  Hypoxia Enhances the Proliferative Response of Macrophages to CSF-1 and Their Pro-Survival Response to TNF , 2012, PloS one.

[35]  E. Clambey,et al.  Hypoxia-inducible factor-1 alpha–dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa , 2012, Proceedings of the National Academy of Sciences.

[36]  Christian M. Metallo,et al.  Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis , 2012, Nature chemical biology.

[37]  F. Blanco,et al.  Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. , 2012, Arthritis and rheumatism.

[38]  S. Kiriakidis,et al.  Prolyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritis. , 2012, Arthritis and rheumatism.

[39]  Mei X. Wu,et al.  Enhanced Th17 Differentiation and Aggravated Arthritis in IEX-1–Deficient Mice by Mitochondrial Reactive Oxygen Species-Mediated Signaling , 2012, The Journal of Immunology.

[40]  P. Hoff,et al.  Human monocytes and macrophages differ in their mechanisms of adaptation to hypoxia , 2012, Arthritis Research & Therapy.

[41]  M. Feldmann,et al.  Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA , 2012, Arthritis Research & Therapy.

[42]  D. Veale,et al.  Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis. , 2012, Arthritis and rheumatism.

[43]  V. Poli,et al.  PKM 2 , STAT 3 and HIF-1 a The Warburg ’ s vicious circle , 2012 .

[44]  Russell G. Jones,et al.  Polarizing macrophages through reprogramming of glucose metabolism. , 2012, Cell metabolism.

[45]  A. Rudensky,et al.  An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. , 2012, Immunity.

[46]  P. Miossec,et al.  IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes , 2012, Annals of the rheumatic diseases.

[47]  G. Semenza Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. , 2012, Trends in pharmacological sciences.

[48]  Yeon-Ah Lee,et al.  Hypoxia differentially affects IL-1β-stimulated MMP-1 and MMP-13 expression of fibroblast-like synoviocytes in an HIF-1α-dependent manner. , 2012, Rheumatology.

[49]  R. Hu,et al.  HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway , 2011, Cell Death and Differentiation.

[50]  K. Mulhall,et al.  Basic and translational research , 2011 .

[51]  M. Lotz,et al.  Autophagy activation by rapamycin reduces severity of experimental osteoarthritis , 2011, Annals of the rheumatic diseases.

[52]  T. Scheper,et al.  Transcriptome analysis. , 2012, Advances in biochemical engineering/biotechnology.

[53]  NFκB and HIF display synergistic behaviour during hypoxic inflammation , 2012, Cellular and Molecular Life Sciences.

[54]  A. Yoshimura,et al.  IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. , 2011, International immunology.

[55]  S. Fuller,et al.  The Role of the P2X7 Receptor in Infectious Diseases , 2011, PLoS pathogens.

[56]  G. Semenza,et al.  Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1 , 2011, Cell.

[57]  D. Veale,et al.  IL-17A Expression Is Localised to Both Mononuclear and Polymorphonuclear Synovial Cell Infiltrates , 2011, PloS one.

[58]  D. Veale,et al.  Toll-Like Receptor 2 Induced Angiogenesis and Invasion Is Mediated through the Tie2 Signalling Pathway in Rheumatoid Arthritis , 2011, PloS one.

[59]  J. O’Sullivan,et al.  Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. , 2011, Arthritis and rheumatism.

[60]  X. Chang,et al.  Glycolysis and rheumatoid arthritis , 2011, International journal of rheumatic diseases.

[61]  J. O’Sullivan,et al.  Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis , 2011, Arthritis research & therapy.

[62]  D. Green,et al.  HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells , 2011, The Journal of experimental medicine.

[63]  P. Dobrzanski,et al.  A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis , 2011, Arthritis research & therapy.

[64]  J. O’Sullivan,et al.  Tumor necrosis factor blocking therapy alters joint inflammation and hypoxia. , 2011, Arthritis and rheumatism.

[65]  Daniel L. Kastner,et al.  Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS) , 2011, The Journal of experimental medicine.

[66]  F. Novelli,et al.  Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. , 2011, Blood.

[67]  S. Ryter,et al.  Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. , 2011, Nature immunology.

[68]  J. Tschopp,et al.  A role for mitochondria in NLRP3 inflammasome activation , 2011, Nature.

[69]  S. Park,et al.  Hypoxia-inducible Factor-1α Enhances Haptoglobin Gene Expression by Improving Binding of STAT3 to the Promoter* , 2011, The Journal of Biological Chemistry.

[70]  P. Carmeliet,et al.  From Vessel Sprouting to Normalization: Role of the Prolyl Hydroxylase Domain Protein/Hypoxia-Inducible Factor Oxygen-Sensing Machinery , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[71]  A. Boskey,et al.  Bone loss caused by iron overload in a murine model: importance of oxidative stress. , 2010, Blood.

[72]  M. Feldmann,et al.  Regulation of the angiopoietin-Tie ligand-receptor system with a novel splice variant of Tie1 reduces the severity of murine arthritis. , 2010, Rheumatology.

[73]  J. Buckwalter,et al.  Oxidant conditioning protects cartilage from mechanically induced damage , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[74]  J. Heersche,et al.  VEGF‐A expression in osteoclasts is regulated by NF‐κB induction of HIF‐1α , 2010, Journal of cellular biochemistry.

[75]  B. Bresnihan,et al.  Extended Report , 2022 .

[76]  A. Koch,et al.  Angiogenesis and vasculogenesis in rheumatoid arthritis , 2010, Current opinion in rheumatology.

[77]  C. L. Murphy,et al.  Inhibition of Hypoxia-inducible Factor-targeting Prolyl Hydroxylase Domain-containing Protein 2 (PHD2) Enhances Matrix Synthesis by Human Chondrocytes* , 2010, The Journal of Biological Chemistry.

[78]  E. Robertson,et al.  Hypoxia Inactivates the VHL Tumor Suppressor through PIASy-Mediated SUMO Modification , 2010, PloS one.

[79]  Chin Teck Ng,et al.  Angiogenesis and blood vessel stability in inflammatory arthritis. , 2010, Arthritis and rheumatism.

[80]  J. O’Sullivan,et al.  Oxidative damage in synovial tissue is associated with in vivo hypoxic status in the arthritic joint , 2009, Annals of the rheumatic diseases.

[81]  C. Kallenberg,et al.  Hypoxia inducible factor-1-alpha (HIF-1alpha) is related to both angiogenesis and inflammation in rheumatoid arthritis. , 2009, Clinical and experimental rheumatology.

[82]  T. Gaber,et al.  Adaptation of Human CD4+ T Cells to Pathophysiological Hypoxia: A Transcriptome Analysis , 2009, The Journal of Rheumatology.

[83]  A. Michelucci,et al.  Jagged1 regulates the activation of astrocytes via modulation of NFκB and JAK/STAT/SOCS pathways , 2009, Glia.

[84]  S. Caja,et al.  Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1alpha/vascular endothelial growth factor-mediated pathway in immunodeficient mice. , 2009, Arthritis and rheumatism.

[85]  C. Joe,et al.  Notch Signal Activates Hypoxia Pathway through HES1-Dependent SRC/Signal Transducers and Activators of Transcription 3 Pathway , 2009, Molecular Cancer Research.

[86]  Zhaogang Dong,et al.  Hypoxia skews dendritic cells to a T helper type 2‐stimulating phenotype and promotes tumour cell migration by dendritic cell‐derived osteopontin , 2009, Immunology.

[87]  E. Cummins,et al.  Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. , 2009, Antioxidants & redox signaling.

[88]  Greg M. Delgoffe,et al.  mTOR: taking cues from the immune microenvironment , 2009, Immunology.

[89]  A. Mobasheri,et al.  Effects of hypoxia on glucose transport in primary equine chondrocytes in vitro and evidence of reduced GLUT1 gene expression in pathologic cartilage in vivo , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[90]  T. Bezabeh,et al.  Characterization of synovial tissue from arthritis patients: a proton magnetic resonance spectroscopic investigation , 2009, Rheumatology International.

[91]  A. Elia,et al.  Human dendritic cells differentiated in hypoxia down‐modulate antigen uptake and change their chemokine expression profile , 2008, Journal of leukocyte biology.

[92]  V. Kuchroo,et al.  IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells , 2008, Nature Immunology.

[93]  A. Chuturgoon,et al.  Mitochondrial depolarisation and oxidative stress in rheumatoid arthritis patients. , 2008, Clinical biochemistry.

[94]  A. Sica,et al.  Divergent effects of hypoxia on dendritic cell functions. , 2008, Blood.

[95]  Tae-You Kim,et al.  STAT3 inhibits the degradation of HIF-1α by pVHL-mediated ubiquitination , 2008, Experimental & Molecular Medicine.

[96]  K. Miyazono,et al.  Enhancement of angiogenesis through stabilization of hypoxia-inducible factor-1 by silencing prolyl hydroxylase domain-2 gene. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[97]  K. Ahn,et al.  Hypoxia appears at pre-arthritic stage and shows co-localization with early synovial inflammation in collagen induced arthritis. , 2008, Clinical and experimental rheumatology.

[98]  R. Xavier,et al.  Redox signalling and the inflammatory response in rheumatoid arthritis , 2008, Clinical and experimental immunology.

[99]  H. Shime,et al.  Tumor-Secreted Lactic Acid Promotes IL-23/IL-17 Proinflammatory Pathway1 , 2008, The Journal of Immunology.

[100]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[101]  U. Lendahl,et al.  Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways , 2008, Proceedings of the National Academy of Sciences.

[102]  S. Colgan,et al.  Mucosal protection by hypoxia‐inducible factor (HIF) prolyl hydroxylase inhibition , 2008 .

[103]  A. Elia,et al.  Transcriptome of Hypoxic Immature Dendritic Cells: Modulation of Chemokine/Receptor Expression , 2008, Molecular Cancer Research.

[104]  C. P. Winlove,et al.  Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. , 2008, The Journal of hand surgery.

[105]  G. Semenza,et al.  Life with Oxygen , 2007, Science.

[106]  T. Prolla,et al.  Mitochondrial point mutations do not limit the natural lifespan of mice , 2007, Nature Genetics.

[107]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[108]  A. Fischer,et al.  Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. , 2007, Experimental cell research.

[109]  J. Nielsen,et al.  Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity , 2006, Proceedings of the National Academy of Sciences.

[110]  P. Ratcliffe,et al.  Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH) , 2006, Proceedings of the National Academy of Sciences.

[111]  J. Stuart,et al.  Mitochondrial DNA maintenance and bioenergetics. , 2006, Biochimica et biophysica acta.

[112]  C. Kallenberg,et al.  Hypoxia inducible factor-1-alpha (HIF-1α) is related to both angiogenesis and inflammation in rheumatoid arthritis , 2006 .

[113]  M. Bours,et al.  Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. , 2006, Pharmacology & therapeutics.

[114]  Coziana Ciurtin,et al.  Correlation between different components of synovial fluid and pathogenesis of rheumatic diseases. , 2006, Romanian journal of internal medicine = Revue roumaine de medecine interne.

[115]  B. Bresnihan,et al.  Standardisation of synovial tissue infiltrate analysis: how far have we come? how much further do we need to go? , 2005, Annals of the rheumatic diseases.

[116]  U. Lendahl,et al.  Hypoxia requires notch signaling to maintain the undifferentiated cell state. , 2005, Developmental cell.

[117]  R. D. Hatton,et al.  Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages , 2005, Nature Immunology.

[118]  Jung Weon Lee,et al.  The FASEB Journal express article 10.1096/fj.04-3099fje. Published online May 26, 2005. ©2005 FASEB , 2022 .

[119]  Hiroshi Nakamura,et al.  TCR Engagement Increases Hypoxia-Inducible Factor-1α Protein Synthesis via Rapamycin-Sensitive Pathway under Hypoxic Conditions in Human Peripheral T Cells1 , 2005, The Journal of Immunology.

[120]  L. Debusk,et al.  Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. , 2005, Arthritis and rheumatism.

[121]  Gillian E. Wu,et al.  Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes , 2005, Arthritis research & therapy.

[122]  A. Harris,et al.  Novel Mechanism of Action for Hydralazine: Induction of Hypoxia-Inducible Factor-1 &agr;, Vascular Endothelial Growth Factor, and Angiogenesis by Inhibition of Prolyl Hydroxylases , 2004, Circulation research.

[123]  E. Holme,et al.  Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses , 2004, Journal of leukocyte biology.

[124]  T. Golub,et al.  mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways , 2004, Nature Medicine.

[125]  A. King,et al.  Modulation of chemokine receptor expression on CLA+ T cells in atopic dermatitis , 2004 .

[126]  Y. Okada,et al.  Hypoxia-Inducible Factor Regulates Survival of Antigen Receptor-Driven T Cells 1 , 2003, The Journal of Immunology.

[127]  P. Bohlen,et al.  Blockade of Vascular Endothelial Growth Factor Receptor I (VEGF-RI), but not VEGF-RII, Suppresses Joint Destruction in the K/BxN Model of Rheumatoid Arthritis 1 , 2003, The Journal of Immunology.

[128]  L. Neckers,et al.  IL‐1β mediated up‐regulation of HIF‐lα via an NFkB/COX‐2 pathway identifies HIF‐1 as a critical link between inflammation and oncogenesis , 2003 .

[129]  C. Lewis,et al.  Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. , 2003, The American journal of pathology.

[130]  Y. Henrotin,et al.  The role of reactive oxygen species in homeostasis and degradation of cartilage. , 2003, Osteoarthritis and cartilage.

[131]  J. DeGroot,et al.  Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis , 2003, Arthritis research & therapy.

[132]  B. Brüne,et al.  Tumor Necrosis Factor- (cid:1) Causes Accumulation of a Ubiquitinated Form of Hypoxia Inducible Factor-1 (cid:1) through a Nuclear Factor- (cid:2) B–Dependent Pathway , 2022 .

[133]  E. Maltezos,et al.  Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis , 2003, Arthritis research & therapy.

[134]  L. Kedes,et al.  Notch Signaling in Vascular Development , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[135]  R. Jaenisch,et al.  HIF-1α Is Essential for Myeloid Cell-Mediated Inflammation , 2003, Cell.

[136]  Alexander Fraser,et al.  Angiopoietins, growth factors, and vascular morphology in early arthritis. , 2003, The Journal of rheumatology.

[137]  Chad Johnson,et al.  Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. , 2002, Circulation research.

[138]  Lionel B Ivashkiv,et al.  Rheumatoid Arthritis Synoviocyte Survival Is Dependent on Stat31 , 2002, The Journal of Immunology.

[139]  G. Semenza,et al.  Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. , 2001, Trends in molecular medicine.

[140]  G. Schuler,et al.  Ex Vivo Isolation and Characterization of Cd4+Cd25+ T Cells with Regulatory Properties from Human Blood , 2001, The Journal of experimental medicine.

[141]  H. Shimano,et al.  Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. , 2001, Biochemical and biophysical research communications.

[142]  P. Loetscher,et al.  Cxc Chemokine Receptor 5 Expression Defines Follicular Homing T Cells with B Cell Helper Function , 2000, The Journal of experimental medicine.

[143]  U. Müller-Ladner,et al.  Activation of synoviocytes , 2000, Current opinion in rheumatology.

[144]  D. Green,et al.  Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. , 2000, Immunology today.

[145]  A. Harris,et al.  Macrophage responses to hypoxia: relevance to disease mechanisms , 1999, Journal of leukocyte biology.

[146]  G. Yancopoulos,et al.  Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. , 1999, Science.

[147]  Andrej Tarkowski,et al.  Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis , 1999, Nature Medicine.

[148]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[149]  J. Isner,et al.  Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. , 1998, Circulation research.

[150]  D. Green,et al.  Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[151]  J. O’Shea Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? , 1997, Immunity.

[152]  G. Firestein Somatic mutation in the tumore suppressor gene in erosive rheumatoid arthritis synovium , 1997 .

[153]  P. Emery,et al.  8‐Hydroxydeoxyguanosine , 1994, FEBS letters.

[154]  G. Haines,et al.  Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. , 1994, Journal of immunology.

[155]  H. Griffiths,et al.  A marker of oxidative DNA damage in systemic lupus erythematosus , 1994 .

[156]  D. Blake,et al.  Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. , 1993, Annals of the rheumatic diseases.

[157]  D. Naughton,et al.  An investigation of the abnormal metabolic status of synovial fluid from patients with rheumatoid arthritis by high field proton nuclear magnetic resonance spectroscopy , 1993, FEBS letters.

[158]  B. Henderson,et al.  Glycolytic activity in human synovial lining cells in rheumatoid arthritis. , 1979, Annals of the rheumatic diseases.

[159]  D. Mccarty,et al.  Synovial fluid pH, lactate, oxygen and carbon dioxide partial pressure in various joint diseases. , 1971, Arthritis and rheumatism.

[160]  K Lund-Olesen,et al.  Oxygen tension in synovial fluids. , 1970, Arthritis and rheumatism.