Inverse Design of Cellular Automata by Genetic Algorithms: An Unconventional Programming Paradigm

Evolving solutions rather than computing them certainly represents an unconventional programming approach. The general methodology of evolutionary computation has already been known in computer science since more than 40 years, but their utilization to program other algorithms is a more recent invention. In this paper, we outline the approach by giving an example where evolutionary algorithms serve to program cellular automata by designing rules for their iteration. Three different goals of the cellular automata designed by the evolutionary algorithm are outlined, and the evolutionary algorithm indeed discovers rules for the CA which solve these problems efficiently.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[3]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[4]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[5]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[8]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[9]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[10]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[11]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[14]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[15]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[17]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[18]  Samuel A. Inverso,et al.  Evolutionary Methods for 2-D Cellular Automata Computation , 2002 .

[19]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[20]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .