Approximating zeros of monotone operators by proximal point algorithms

In this paper, we introduce two kinds of iterative algorithms for the problem of finding zeros of maximal monotone operators. Weak and strong convergence theorems are established in a real Hilbert space. As applications, we consider a problem of finding a minimizer of a convex function.

[1]  Benar Fux Svaiter,et al.  An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions , 2000, Math. Oper. Res..

[2]  G. Cohen Auxiliary problem principle extended to variational inequalities , 1988 .

[3]  Kunquan Lan,et al.  Convergence of approximants for demicontinuous pseudo-contractive maps in Hilbert spaces , 2002 .

[4]  S. Reich,et al.  Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces , 1979 .

[5]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[6]  Yongfu Su,et al.  Approximation of a zero point of accretive operator in Banach spaces , 2007 .

[7]  Yeol Je Cho,et al.  Approximate Proximal Point Algorithms for Finding Zeroes of Maximal Monotone Operators in Hilbert Spaces , 2007 .

[8]  Y. Censor,et al.  Proximal minimization algorithm withD-functions , 1992 .

[9]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[10]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[11]  B. He,et al.  A new accuracy criterion for approximate proximal point algorithms , 2001 .

[12]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[13]  Wataru Takahashi,et al.  Strong Convergence of a Proximal-Type Algorithm in a Banach Space , 2002, SIAM J. Optim..

[14]  W. Layton On the existence of periodic solutions to , 1982 .

[15]  A. Iusem,et al.  Enlargement of Monotone Operators with Applications to Variational Inequalities , 1997 .

[16]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[17]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[18]  Wataru Takahashi,et al.  Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces , 2000 .

[19]  Yeol Je Cho,et al.  Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings☆ , 2004 .

[20]  Jen-Chih Yao,et al.  NEW ACCURACY CRITERIA FOR MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS IN HILBERT SPACES , 2008 .

[21]  Lishan Liu,et al.  Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces , 1995 .

[22]  Ram U. Verma,et al.  Rockafellar's celebrated theorem based on A -maximal monotonicity design , 2008, Appl. Math. Lett..

[23]  Ronald E. Bruck A strongly convergent iterative solution of 0 ϵ U(x) for a maximal monotone operator U in Hilbert space , 1974 .

[24]  F. Browder Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .

[25]  Y. Censor,et al.  On the proximal minimization algorithm with D-Functions , 1992 .

[26]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[27]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[28]  Klaus Deimling,et al.  Zeros of accretive operators , 1974 .

[29]  A. Pazy Remarks on nonlinear ergodic theory in Hilbert space , 1979 .