Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization
暂无分享,去创建一个
Davide Ferrari | Sandra Paterlini | Margherita Giuzio | Davide Ferrari | S. Paterlini | Margherita Giuzio
[1] John E. Beasley,et al. An evolutionary heuristic for the index tracking problem , 2003, Eur. J. Oper. Res..
[2] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[3] M. Carrasco. Optimal Portfolio Selection using Regularization Marine Carrasco and Nérée Noumon , 2010 .
[4] Stephen J. Wright,et al. Simultaneous Variable Selection , 2005, Technometrics.
[5] Stéphane Canu,et al. Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming , 2009, IEEE Transactions on Signal Processing.
[6] P. Frost,et al. For better performance , 1988 .
[7] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[8] Olivier Ledoit,et al. Honey, I Shrunk the Sample Covariance Matrix , 2003 .
[9] Peter Winker,et al. Cardinality versus q-norm constraints for index tracking , 2010 .
[10] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues , 2001 .
[11] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[12] Frank J. Fabozzi,et al. 60 Years of portfolio optimization: Practical challenges and current trends , 2014, Eur. J. Oper. Res..
[13] Tuo Zhao,et al. Pathwise Coordinate Optimization for Sparse Learning: Algorithm and Theory , 2014, ArXiv.
[14] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[15] S. Paterlini,et al. Constructing Optimal Sparse Portfolios Using Regularization Methods , 2014 .
[16] José A.F. Machado,et al. Robust Model Selection and M-Estimation , 1993, Econometric Theory.
[17] M. Best,et al. On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .
[18] Davide Ferrari,et al. Efficient and Robust Estimation for Financial Returns: An Approach Based on q-Entropy , 2010 .
[19] R. Jagannathan,et al. Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .
[20] Shie-Shien Yang. [Multiresponse Estimation with Special Application to Linear Systems of Differential Equations]: Discussion , 1985 .
[21] Raman Uppal,et al. A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..
[22] Elvezio Ronchetti,et al. Robustness Aspects of Model Choice , 1997 .
[23] Richard O. Michaud. The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .
[24] Bernhard Schölkopf,et al. Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..
[25] Yuhong Yang,et al. Maximum Lq-likelihood estimation. , 2010, 1002.4533.
[26] R. C. Merton,et al. On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .
[27] Beatriz Vaz de Melo Mendes,et al. Robust multivariate modeling in finance , 2005 .
[28] Richard O. Michaud,et al. The Markowitz Optimization Enigma: Is ‘Optimized’ Optimal? , 2005 .
[29] Ke Yu,et al. Constraints , 2019, Sexual Selection.
[30] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[31] Nico van der Wijst,et al. Optimal portfolio selection and dynamic benchmark tracking , 2005, Eur. J. Oper. Res..
[32] John E. Beasley,et al. Mixed-integer programming approaches for index tracking and enhanced indexation , 2009, Eur. J. Oper. Res..
[33] Jan Havrda,et al. Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.
[34] Davide Ferrari,et al. On robust estimation via pseudo-additive information , 2012 .
[35] Francisco J. Nogales,et al. Portfolio Selection with Robust Estimates of Risk , 2006 .
[36] Xinfeng Zhou,et al. Application of robust statistics to asset allocation models , 2006 .
[37] Runze Li,et al. Regularization Parameter Selections via Generalized Information Criterion , 2010, Journal of the American Statistical Association.
[38] C. De Mol,et al. Forecasting Using a Large Number of Predictors: Is Bayesian Regression a Valid Alternative to Principal Components? , 2006, SSRN Electronic Journal.
[39] Olivier Ledoit,et al. A well-conditioned estimator for large-dimensional covariance matrices , 2004 .
[40] S. Vanduffel,et al. Mean-Variance Optimal Portfolios in the Presence of a Benchmark with Applications to Fraud Detection , 2013 .
[41] Chih-Ling Tsai,et al. A note on the unification of the Akaike information criterion , 1998 .
[42] Sandra Paterlini,et al. Regular(Ized) Hedge Fund Clones , 2009 .