Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise

Abstract We extend existing high-resolution Oligocene–Miocene proxy records from Ocean Drilling Program (ODP) Leg 154. The extended record spans the time interval from ∼ 17.86 to 26.5 Ma. The data are age calibrated against a new astronomical solution that affords a re-evaluation of the intricate interaction between orbital (“Milankovitch”) forcing of the climate and ocean system, and the fidelity with which this forcing is recorded in oxygen and carbon stable isotope measurements from benthic foraminifera, and associated lithological proxy records of magnetic susceptibility, colour reflectance, and the measured sand fraction. Our records show a very strong continual imprint of the Earth's obliquity cycle, modulate in amplitude every ∼ 41 ka , a very strong eccentricity signal in the carbon isotope records, and a strong, but probably local, imprint of climatic precession on the coarse fraction and magnetic susceptibility records. Our data allowed us to evaluate how the interaction of long, multi-million year beats in the Earth's eccentricity and obliquity are implicated in the waxing and waning of ice-sheets, presumably on Antarctica. Our refined age model confirms the revised age of the Oligocene–Miocene boundary, previously established by analysis of the lithological data, and allows a strong correlation with the geomagnetic time scale by comparison with data from ODP Site 1090, Southern Ocean.

[1]  J. Laskar The limits of Earth orbital calculations for geological time-scale use , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Aradhna K. Tripati,et al.  Orbitally Induced Climate and Geochemical Variability Across the Oligocene/Miocene Boundary , 2000 .

[3]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[4]  H. Pälike,et al.  Oligocene climate dynamics , 2004 .

[5]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[6]  N. Shackleton,et al.  3. SEDIMENT FLUXES BASED ON AN ORBITALLY TUNED TIME SCALE 5 MA TO 14 MA, SITE 926 1 , 1997 .

[7]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[8]  H. Brumsack,et al.  Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years , 2001, Nature.

[9]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[10]  N. Shackleton,et al.  SEDIMENT FLUXES BASED ON AN ORBITALLY TUNED TIME SCALE 5 MA TO 14 MA , SITE 9261 , 1997 .

[11]  B. Flower,et al.  3. MAGNETOSTRATIGRAPHIC CALIBRATION OF THE LATE OLIGOCENE CLIMATE TRANSITION , 2005 .

[12]  N. Shackleton,et al.  Constraints on astronomical parameters from the geological record for the last 25 Myr , 2000 .

[13]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[14]  J. Zachos,et al.  Climate Response to Orbital Forcing Across the Oligocene-Miocene Boundary , 2001, Science.

[15]  G. Weedon,et al.  Time-Series Analysis and Cyclostratigraphy: Acknowledgements , 2003 .

[16]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[17]  Michael Schulz,et al.  Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion , 2005, Nature.

[18]  Frederik J. Hilgen,et al.  Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta , 2005 .

[19]  P. Pearson,et al.  5. THE OLIGOCENE TIME SCALE AND CYCLOSTRATIGRAPHY ON THE CEARA RISE, WESTERN EQUATORIAL ATLANTIC 1 , 1997 .

[20]  R. DeConto,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[21]  W. Godwin Article in Press , 2000 .

[22]  Caroline H. Lear,et al.  Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean , 2005, Nature.

[23]  A. Mackensen,et al.  The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) Relative to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: Implications for glacial ocean circulation models , 1993 .

[24]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[25]  James C. Zachos,et al.  Orbitally paced climate oscillations across the Oligocene/Miocene boundary , 1997, Nature.

[26]  J. Zachos,et al.  28. MILANKOVITCH-SCALE CLIMATE VARIABILITY RECORDED NEAR THE OLIGOCENE/MIOCENE BOUNDARY 1 , 1997 .

[27]  Heiko Pälike,et al.  Astronomic calibration of the late Oligocene through early Miocene geomagnetic polarity time scale , 2004 .

[28]  J. Kasting,et al.  Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. , 1992, Global and planetary change.

[29]  J. Laskar,et al.  Astronomical calibration of Oligocene--Miocene time , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Pascal Yiou,et al.  Macintosh Program performs time‐series analysis , 1996 .

[31]  E. Martin,et al.  Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 ± 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica COMMENT , 2003 .

[32]  A. Roberts,et al.  Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0 ± 0.1 Ma from the CRP-2A drill core, Ross Sea, Antarctica , 2002 .

[33]  K. Billups,et al.  Eocene to Miocene magnetostratigraphy, biostratigraphy, and chemostratigraphy at ODP Site 1090 (sub-Antarctic South Atlantic) , 2003 .

[34]  Michael Ghil,et al.  Revised version submitted to The Astrophysical Journal SUCCESSIVE REFINEMENTS IN LONG-TERM INTEGRATIONS OF PLANETARY ORBITS , 2022 .

[35]  P. Pearson,et al.  29. MULTISPECIES PLANKTONIC FORAMINIFER STABLE ISOTOPE STRATIGRAPHY THROUGH OLIGOCENE/MIOCENE BOUNDARY CLIMATIC CYCLES, SITE 926 1 , 1997 .

[36]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[37]  J. Zachos,et al.  Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic , 2002 .

[38]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[39]  W. B. Harland,et al.  A Geological Time Scale , 1983 .

[40]  Isabella Raffi,et al.  Astronomical calibration age for the Oligocene-Miocene boundary , 2000 .

[41]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[42]  J. Laskar,et al.  Geologic constraints on the chaotic diffusion of the solar system , 2004 .

[43]  I. Raffi Precision and accuracy of nannofossil biostratigraphic correlation , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  A. Izenman,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man and Cybernetics.

[45]  M. Loutre,et al.  Insolation and Earth's orbital periods , 1993 .

[46]  Jacques Laskar,et al.  On the long term evolution of the spin of the Earth. , 1995 .