Nuclear spin circular dichroism.

Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

[1]  M. Seth,et al.  Calculation of the magnetic circular dichroism B term from the imaginary part of the Verdet constant using damped time-dependent density functional theory. , 2007, The Journal of chemical physics.

[2]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[3]  Nobuaki Nakashima,et al.  Laser flash photolysis of benzene. III. Sn←S1 absorption of gaseous benzene , 1980 .

[4]  Trygve Helgaker,et al.  Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. , 2004, The Journal of chemical physics.

[5]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[6]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[7]  Kenneth Ruud,et al.  The A and B terms of magnetic circular dichroism revisited. , 2008, The journal of physical chemistry. A.

[8]  E. Davidson,et al.  Zero point corrections to vertical excitation energies , 1998 .

[9]  P. Taylor,et al.  The geometry, vibrational frequencies, and total atomization energy of ethylene. A calibration study , 1996 .

[10]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[11]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[12]  Thomas Kjærgaard,et al.  Comparison of standard and damped response formulations of magnetic circular dichroism. , 2011, The Journal of chemical physics.

[13]  Antonio Rizzo,et al.  The Cotton-Mouton effect in gases: Experiment and theory , 1997 .

[14]  M. He,et al.  Analytical theory of the nuclear-spin-induced optical rotation in liquids , 2011 .

[15]  Patrick Norman,et al.  Electronic circular dichroism spectra from the complex polarization propagator. , 2007, The Journal of chemical physics.

[16]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[17]  Ulf Ekström,et al.  Near-edge x-ray absorption and natural circular dichroism spectra of L-alanine: a theoretical study based on the complex polarization propagator approach. , 2007, The Journal of chemical physics.

[18]  A. Hiraya,et al.  Direct absorption spectra of jet-cooled benzene in 130-260 nm , 1991 .

[19]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[20]  Poul Jørgensen,et al.  On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations. , 2011, Journal of chemical theory and computation.

[21]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[22]  G. Bertsch,et al.  Magnetic circular dichroism in real-time time-dependent density functional theory. , 2010, The Journal of chemical physics.

[23]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[24]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[25]  M. D. F.R.S. XLIX. Experimental researches in electricity.—Nineteenth series , 1846 .

[26]  M. Romalis,et al.  Chemical distinction by nuclear spin optical rotation. , 2010, Physical review letters.

[27]  Ulf Ekström,et al.  X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach , 2006 .

[28]  Jochen Autschbach,et al.  Calculation of the A term of magnetic circular dichroism based on time dependent-density functional theory I. Formulation and implementation. , 2004, The Journal of chemical physics.

[29]  Patrick Norman,et al.  Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long-range interactions for the noble gases and n-alkanes , 2003 .

[30]  P. Jørgensen,et al.  Gauge-origin independent magneto-optical activity within coupled cluster response theory , 2000 .

[31]  P. Bouř,et al.  Communication: fullerene resolution by the magnetic circular dichroism. , 2013, The Journal of chemical physics.

[32]  Philip J. Stephens,et al.  Magnetic Optical Activity , 1966 .

[33]  D. M. Bishop,et al.  Nonlinear response theory with relaxation: the first-order hyperpolarizability. , 2005, The Journal of chemical physics.

[34]  D. Sakellariou,et al.  Time-resolved, optically detected NMR of fluids at high magnetic field. , 2010, The Journal of chemical physics.

[35]  M. He,et al.  New nuclear-spin-induced Cotton-Mouton effect in fluids at high DC magnetic field. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  J. Vaara,et al.  Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules. , 2014, The Journal of chemical physics.

[37]  M. Romalis,et al.  Optical detection of liquid-state NMR , 2006, Nature.

[38]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  P. Jørgensen,et al.  Gauge-origin-independent coupled cluster singles and doubles calculation of magnetic circular dichroism of azabenzenes and phosphabenzene using London orbitals. , 2007, Journal of Physical Chemistry A.

[41]  Petr Stepánek,et al.  Computation of magnetic circular dichroism by sum‐over‐states summations , 2013, J. Comput. Chem..

[42]  J. Olsen,et al.  AB INITIO DETERMINATIONS OF MAGNETIC CIRCULAR DICHROISM , 1999 .

[43]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[44]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[45]  G. Scuseria,et al.  Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD) , 1989 .

[46]  Kenneth Ruud,et al.  Complex polarization propagator calculations of magnetic circular dichroism spectra. , 2008, The Journal of chemical physics.

[47]  K. Ruud,et al.  Ab initio calculation of magnetic circular dichroism , 2012 .

[48]  Nuclear spin optical rotation and Faraday effect in gaseous and liquid water. , 2012, The Journal of chemical physics.

[49]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[50]  S. Coriani,et al.  The magnetic circular dichroism spectrum of the C60 fullerene , 2013 .

[51]  Philip J. Stephens,et al.  Theory of Magnetic Circular Dichroism , 1970 .

[52]  D. Pagliero,et al.  Magneto-optical contrast in liquid-state optically detected NMR spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[53]  G. Wagnière,et al.  The long-wavelength MCD of some quinones and its interpretation by semi-empirical MO methods , 1987 .

[54]  J. Vaara,et al.  Nuclear spin-induced Cotton-Mouton effect in molecules. , 2013, The Journal of chemical physics.

[55]  Jiří Čížek,et al.  On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules , 2007 .

[56]  J. Vaara,et al.  Laser-induced splittings in the nuclear magnetic resonance spectra of the rare gas atoms , 2004, physics/0406073.

[57]  H. Takagi,et al.  Studies of the π–π* Absorption Bands of p-Quinones and o-Benzoquinone , 1974 .

[58]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[59]  P. Lantto,et al.  Laser-induced nuclear magnetic resonance splitting in hydrocarbons. , 2008, The Journal of chemical physics.

[60]  M. Romalis,et al.  Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations. , 2012, The journal of physical chemistry letters.

[61]  K. Ruud,et al.  An IEF-PCM study of solvent effects on the Faraday $${\mathcal{B}}$$ term of MCD , 2008 .

[62]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[63]  Communication: nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms. , 2013, The Journal of chemical physics.

[64]  H. Ågren,et al.  Polarization propagator for x-ray spectra. , 2006, Physical review letters.

[65]  Tong-tong Lu,et al.  Nuclear-spin-induced optical Cotton–Mouton effect in fluids , 2009 .

[66]  John F. Stanton,et al.  The Equilibrium Structure of Benzene , 2000 .

[67]  P. Jørgensen,et al.  Gauge-Origin Independent Formulation and Implementation of Magneto-Optical Activity within Atomic-Orbital-Density Based Hartree-Fock and Kohn-Sham Response Theories. , 2009, Journal of chemical theory and computation.

[68]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[69]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[70]  P. Lantto,et al.  Fully Relativistic Calculations of Faraday and Nuclear Spin-Induced Optical Rotation in Xenon. , 2012, Journal of chemical theory and computation.

[71]  Michael Faraday,et al.  I. Experimental researches in electricity.—Nineteenth series , 1846, Philosophical Transactions of the Royal Society of London.

[72]  A. Buckingham,et al.  The effect of circularly polarized light on NMR spectra , 1997 .

[73]  F. Neese,et al.  Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. , 2013, Journal of chemical theory and computation.

[74]  D. M. Bishop,et al.  Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations , 2001 .

[75]  P. Jørgensen,et al.  Damped response theory description of two-photon absorption. , 2011, The Journal of chemical physics.

[76]  D. H. Liebenberg,et al.  The Faraday Effect in Gases and Vapors. I , 1954 .

[77]  P. Norman,et al.  Electric dipole polarizabilities and C6 dipole-dipole dispersion coefficients for sodium clusters and C60. , 2006, The Journal of chemical physics.

[78]  M. Packard,et al.  Chemical Effects on Nuclear Induction Signals from Organic Compounds , 1951 .

[79]  H. Nakatsuji,et al.  Theoretical studies on magnetic circular dichroism by the finite perturbation method with relativistic corrections. , 2005, The Journal of chemical physics.

[80]  I. Savukov,et al.  Method for accurate measurements of nuclear-spin optical rotation for applications in correlated optical-NMR spectroscopy. , 2013, Journal of magnetic resonance.

[81]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.