Accelerator mass spectrometry: Is the future bigger or smaller?

[1]  M. Suter,et al.  MICADAS: A new compact radiocarbon AMS system , 2007 .

[2]  G. Skog The single stage AMS machine at Lund University: Status report , 2007 .

[3]  D. Pollard,et al.  Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland , 2005 .

[4]  D. Donahue,et al.  Effects of climate and the cosmic-ray flux on the 10Be content of marine sediments , 2005 .

[5]  P. Povinec,et al.  Recent developments in radiometric and mass spectrometry methods for marine radioactivity measurements , 2004 .

[6]  L. K. Fifield,et al.  Accelerator mass spectrometry of plutonium at 300 kV , 2004 .

[7]  R. Healy,et al.  Plans for expanded 14C analyses at the NOSAMS facility – a status and progress report , 2004 .

[8]  M. Döbeli,et al.  Radiocarbon AMS towards its low-energy limits , 2004 .

[9]  Robert J. Schneider,et al.  A gas ion source for continuous-flow AMS , 2004 .

[10]  L. K. Fifield,et al.  Developments in AMS of 99Tc , 2004 .

[11]  W. Kieser,et al.  The potential for AMS analysis of 10Be using BeF , 2004 .

[12]  L. K. Fifield,et al.  Measurements of Pu and Ra isotopes in soils and sediments by AMS , 2004 .

[13]  M. Döbeli,et al.  10Be measurements with terminal voltages below 1 MV , 2004 .

[14]  I. Franchi,et al.  Pinpointing the Source of a Lunar Meteorite: Implications for the Evolution of the Moon , 2004, Science.

[15]  G. Burr,et al.  New frontiers in dating of geological, paleoclimatic and anthropological applications using accelerator mass spectrometric measurements of 14C and 10Be in diverse samples , 2004 .

[16]  P. Kubik,et al.  Flint mining in prehistory recorded by in situ-produced cosmogenic 10Be. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Clemens,et al.  Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period , 2004, Nature.

[18]  M. Summerfield,et al.  Geomorphological applications of cosmogenic isotope analysis , 2004 .

[19]  K. Orlandini,et al.  Anthropogenic 244Pu in the environment , 2004 .

[20]  D. Oughton,et al.  Plutonium isotope ratios in the Yenisey and Ob estuaries. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[21]  M. Bichler,et al.  Search for live 182Hf in deep-sea sediments , 2004 .

[22]  B. Hughey,et al.  An interface for direct analysis of (14)c in nonvolatile samples by accelerator mass spectrometry. , 2004, Analytical chemistry.

[23]  A. Jull,et al.  Extra-terrestrial influx rates of cosmogenic isotopes and platinum group elements: realizable geochemical effects , 2003 .

[24]  R. Wieler,et al.  Limited Pliocene/Pleistocene glaciation in Deep Freeze Range, northern Victoria Land, Antarctica, derived from in situ cosmogenic nuclides , 2003, Antarctic Science.

[25]  W. Ruddiman,et al.  The Anthropogenic Greenhouse Era Began Thousands of Years Ago , 2003 .

[26]  F. Parenti,et al.  A revised chronology of the lowest occupation layer of Pedra Furada Rock Shelter, Piauı́, Brazil: the Pleistocene peopling of the Americas , 2003 .

[27]  M. D. Moore,et al.  Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century , 2003 .

[28]  Y. Huang,et al.  Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic , 2003, Science.

[29]  R. Wood,et al.  Global warming and thermohaline circulation stability , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Michael Schulz,et al.  Centennial‐to‐millennial‐scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N , 2003 .

[31]  T. Guilderson,et al.  Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America , 2003 .

[32]  W. Rühm,et al.  Addendum: Measuring fast neutrons in Hiroshima at distances relevant to atomic-bomb survivors , 2003, Nature.

[33]  Ian A. Franchi,et al.  The Genesis Solar-Wind Collector Materials , 2003 .

[34]  D. Bourlès,et al.  In situ produced 10Be measurements at great depths: implications for production rates by fast muons , 2003 .

[35]  J. Pierce,et al.  Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: a long-term perspective , 2003 .

[36]  M. Caffee,et al.  Lower Pliocene Hominid Remains from Sterkfontein , 2003, Science.

[37]  Y. Zhou,et al.  Radiocarbon Dating from 40 to 60 ka BP at Border Cave, South Africa , 2003 .

[38]  S. Sie,et al.  AUSTRALIS: A new tool for the study of isotopic systems and geochronology in mineral systems , 2002 .

[39]  S. Ivy‐Ochs,et al.  Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons , 2002 .

[40]  J. Lunine,et al.  Radiocarbon on Titan , 2002 .

[41]  P. Kubik,et al.  Production of selected cosmogenic radionuclides by muons 1. Fast muons , 2002 .

[42]  K. van der Borg,et al.  In situ produced 14C by cosmic ray muons in ablating Antarctic ice , 2002 .

[43]  J. Hayes,et al.  Test of negative ion beams from a microwave ion source with a charge exchange canal for accelerator mass spectrometry applications , 2002 .

[44]  R. Wieler,et al.  The limited influence of glaciations in Tibet on global climate over the past 170 000 yr , 2002 .

[45]  J. Jouzel,et al.  Record of cosmogenic in situ produced 14C in Vostok and Taylor Dome ice samples: Implications for strong role of wind ventilation processes , 2001 .

[46]  Bernd Kromer,et al.  Persistent Solar Influence on North Atlantic Climate During the Holocene , 2001, Science.

[47]  J. Hayes,et al.  Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ 14 C analysis , 2001 .

[48]  F. Phillips,et al.  Terrestrial in situ cosmogenic nuclides: theory and application , 2001 .

[49]  J. Quade,et al.  A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz , 2001 .

[50]  Edwards,et al.  Extremely Large Variations of Atmospheric 14C Concentration During the Last Glacial Period , 2001, Science.

[51]  G. Miller,et al.  Early Human Occupation at Devil's Lair, Southwestern Australia 50,000 Years Ago , 2001, Quaternary Research.

[52]  J. Stone Air pressure and cosmogenic isotope production , 2000 .

[53]  H. Synal,et al.  Ion beam interaction with stripper gas – Key for AMS at sub MeV , 2000 .

[54]  B. Hughey,et al.  Low-energy biomedical GC–AMS system for 14C and 3H detection , 2000 .

[55]  J. Donoghue,et al.  The NOSAMS sample preparation laboratory in the next millenium: Progress after the WOCE program , 2000 .

[56]  J. Vogel Accelerator mass spectrometry for human biochemistry: The practice and the potential , 2000 .

[57]  H. Synal,et al.  Tandem AMS at sub-MeV energies – Status and prospects , 2000 .

[58]  P. Damon,et al.  Geomagnetic modulation of the late Pleistocene cosmic-ray flux as determined by 10Be from Blake Outer Ridge marine sediments , 2000 .

[59]  Suter,et al.  Accelerator mass spectrometry as a powerful tool for the determination of 129I in rainwater , 2000, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[60]  L. K. Fifield,et al.  Plutonium from Mayak : Measurement of isotope ratios and activities using accelerator mass spectrometry , 2000 .

[61]  P. Bland,et al.  Ancient Meteorite Finds and the Earth's Surface Environment , 2000, Quaternary Research.

[62]  G. Denton,et al.  Moraine Exposure Dates Imply Synchronous Younger Dryas Glacier Advances in the European Alps and in the Southern Alps of New Zealand , 1999 .

[63]  L. K. Fifield Accelerator mass spectrometry and its applications , 1999 .

[64]  J. Andrews,et al.  Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes , 1999, Nature.

[65]  W. Hillebrandt,et al.  Indication for Supernova Produced 60 Fe Activity on Earth , 1999 .

[66]  Herzog,et al.  Shock melting of the canyon diablo impactor: constraints from nickel-59 contents and numerical modeling , 1999, Science.

[67]  R. C. Garner,et al.  Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. , 1999, Rapid communications in mass spectrometry : RCM.

[68]  Douglas J. Donahue,et al.  14C depth profiles in Apollo 15 and 17 cores and lunar rock 68815 , 1998 .

[69]  P. Kubik,et al.  10BE AND 26AL PRODUCTION RATES DEDUCED FROM AN INSTANTANEOUS EVENT WITHIN THE DENDRO-CALIBRATION CURVE, THE LANDSLIDE OF KOFELS, OTZ VALLEY, AUSTRIA , 1998 .

[70]  R. Reedy,et al.  41Ca, 26Al, and 10Be in lunar basalt 74275 and 10Be in the double drive tube 74002/74001 , 1998 .

[71]  D. Fink Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science , 1998 .

[72]  K. Nishiizumi,et al.  Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka , 1997 .

[73]  G. Burr,et al.  Measurements of in situ 14C concentrations in Greenland Ice Sheet Project 2 ice covering a 17‐kyr time span: Implications to ice flow dynamics , 1997 .

[74]  Heidi Cullen,et al.  A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates , 1997 .

[75]  R. Reedy,et al.  Depth profile of41Ca in an Apollo 15 drill core and the low-energy neutron flux in the Moon , 1997 .

[76]  B. Hughey,et al.  Design of a compact 1 MV AMS system for biomedical research , 1997 .

[77]  M. Suter,et al.  AMS OF 14C AT LOW ENERGIES , 1997 .

[78]  C. García-Rosales,et al.  Tritium depth profiling in carbon by accelerator mass spectrometry , 1997 .

[79]  C. Tuniz,et al.  Recent developments at the ANTARES AMS centre , 1996 .

[80]  R. Reedy,et al.  Carbon 14 measurements of the Martian atmosphere as an indicator of atmosphere‐regolith exchange of CO2 , 1996 .

[81]  R. Middleton,et al.  Beryllium-10 Dating of the Duration and Retreat of the Last Pinedale Glacial Sequence , 1995, Science.

[82]  J. Klein,et al.  Isotopic fractionation of negative ions produced by Cs sputtering in a high-intensity source , 1994 .

[83]  K. Purser A future AMS/chromatography instrument for biochemical and environmental measurements , 1994 .

[84]  M. Suter,et al.  Isobar discrimination in accelerator mass spectrometry by detecting characteristic projectile X-rays , 1994 .

[85]  C. Maggiore,et al.  FT-ICR with laser ablation and AMS combined with X-ray detection, applied to the measurement of long-lived radionuclides from fission or activation: preliminary results , 1993 .

[86]  J. Beck,et al.  A Large Drop in Atmospheric 14C/12C and Reduced Melting in the Younger Dryas, Documented with 230Th Ages of Corals , 1993, Science.

[87]  E. Bard,et al.  U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years , 1990, Nature.

[88]  E. Bard,et al.  Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals , 1990, Nature.

[89]  J. Jouzel,et al.  10Be and δ2H in polar ice cores as a probe of the solar variability’s influence on climate , 1990, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[90]  K. Nishiizumi,et al.  Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks , 1989 .

[91]  L. Kilius,et al.  Accelerator mass spectrometry of 129I at isotrace , 1987 .

[92]  D. Lal,et al.  Tracing quartz through the environment , 1985 .

[93]  W. Broecker,et al.  Radiocarbon measurements on coexisting benthic and planktic foraminifera shells: potential for reconstructing ocean ventilation times over the past 20 000 years , 1984 .

[94]  G. Raisbeck,et al.  Deposition rate and seasonal variations in precipitation of cosmogenic 10Be , 1979, Nature.

[95]  C. Bennett,et al.  Radiocarbon Dating Using Electrostatic Accelerators: Negative Ions Provide the Key , 1977, Science.

[96]  William R. Stott,et al.  Carbon-14: Direct Detection at Natural Concentrations , 1977, Science.

[97]  R. Muller Radioisotope Dating with a Cyclotron , 1977, Science.

[98]  W. F. Libby,et al.  Age determinations by radiocarbon content; checks with samples of known age. , 1949, Science.

[99]  L. W. Alvarez,et al.  He 3 in Helium , 1939 .

[100]  K. Hughen,et al.  Radiocarbon Dating of Alkenones from Marine Sediments: III. Influence of Solvent Extraction Procedures on 14C Measurements of Foraminifera , 2005, Radiocarbon.

[101]  C. Reddy,et al.  Radiocarbon Dating of Alkenones from Marine Sediments: I. Isolation Protocol , 2005, Radiocarbon.

[102]  J. Southon,et al.  The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: Initial Operation and a Background Surprise , 2004, Radiocarbon.

[103]  G. M. Klody,et al.  Initial Results with Low Energy Single Stage AMS , 2004, Radiocarbon.

[104]  Caitlin E. Buck,et al.  Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP , 2004, Radiocarbon.

[105]  M. Suter,et al.  10Be Analyses with a Compact AMS Facility—Are Bef2 Samples the Solution? , 2004, Radiocarbon.

[106]  J. Beck,et al.  Accelerator mass spectrometry at Arizona: geochronology of the climate record and connections with the ocean. , 2003, Journal of environmental radioactivity.

[107]  P. Kubik,et al.  Surface exposure dating of Sirius Formation at Hallan Hills nunatak, Antarctica: New evidence for long-term ice-sheet stability. , 2003 .

[108]  G. Raisbeck,et al.  129I/127I, 129I/137Cs and 129I/99Tc in the Norwegian coastal current from 1980 to 1998. , 2002, Journal of environmental radioactivity.

[109]  S. Weiner,et al.  The Use of Raman Spectroscopy to Monitor the Removal of Humic Substances from Charcoal: Quality Control for 14C Dating of Charcoal , 2002, Radiocarbon.

[110]  M. Stuiver,et al.  Woce Radiocarbon IV: Pacific Ocean Results; P10, P13N, P14C, P18, P19 & S4P , 2002, Radiocarbon.

[111]  G. Burr,et al.  Converting AMS Data to Radiocarbon Values: Considerations and Conventions , 2001, Radiocarbon.

[112]  B. Schmitz,et al.  Accretion of extraterrestrial matter throughout Earth's history , 2001 .

[113]  P. Kubik,et al.  Can We Use Cosmogenic Isotopes to Date Stone Artifacts? , 2001, Radiocarbon.

[114]  J. Southon,et al.  Stepped-Combustion 14C Dating of Sediment: A Comparison with Established Techniques , 2001, Radiocarbon.

[115]  Timothy T. Barrows,et al.  Radiocarbon Dating of “Old” Charcoal Using a Wet Oxidation, Stepped-Combustion Procedure , 1999, Radiocarbon.

[116]  J. W. Beck,et al.  INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP , 1998, Radiocarbon.

[117]  J. Vogel,et al.  Calibration of Radiocarbon Dates for the Late Pleistocene Using U/Th Dates on Stalagmites , 1997, Radiocarbon.

[118]  Emmanuelle Delque Koliix Direct Radiocarbon Dating of Pottery: Selective Heat Treatment to Retrieve Smoke-Derived Carbon , 1995 .

[119]  Maobai Chen,et al.  Breakthrough of the Mini-Cyclotron Mass Spectrometer for 14C Analysis , 1995, Radiocarbon.

[120]  H. Scharpenseel,et al.  Twenty-Five Years of Radiocarbon Dating Soils: Paradigm of Erring and Learning , 1992, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[121]  D. Donahue,et al.  AMS Radiocarbon Dating of Ice: Validity of the Technique and the Problem of Cosmogenic In-Situ Production in Polar Ice Cores , 1992, Radiocarbon.

[122]  D. Donahue,et al.  Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements , 1990, Radiocarbon.

[123]  Weijian Zhou,et al.  Evaluation of 14C Ages of Organic Fractions of Paleosols from Loess-Paleosol Sequences Near Xian, China , 1989, Radiocarbon.

[124]  J. Vogel 14C Variations During the Upper Pleistocene , 1983, Radiocarbon.

[125]  K. Purser,et al.  Macs: An Accelerator-Based Radioisotope Measuring System , 1980, Radiocarbon.