The circular RNome of primary breast cancer

Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R < 0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.

Alain Viari | Johan Staaf | Carlos Caldas | Annegien Broeks | Saskia M Wilting | Anne Vincent-Salomon | John W M Martens | Serena Nik-Zainal | Christine Desmedt | Alastair M Thompson | Angelo Paradiso | Adam Butler | Stian Knappskog | Sancha Martin | Sunil R Lakhani | Roberto Salgado | A. Børresen-Dale | M. Stratton | M. J. van de Vijver | C. Desmedt | J. Foekens | A. Sieuwerts | Wendy J. C. Prager-van der Smissen | M. Smid | J. Martens | S. Nik-Zainal | Sancha Martin | A. Butler | A. Broeks | S. Lakhani | C. Caldas | A. Richardson | H. Stunnenberg | H. Davies | S. Knappskog | A. Paradiso | P. Span | A. Vincent-Salomon | R. Salgado | A. Thompson | G. G. Van den Eynden | J. Staaf | F. Sweep | S. V. van Laere | A. Futreal | P. Simpson | T. King | J. Eyfjord | A. Viari | C. Purdie | F. G. Rodriguez-Gonzalez | M. Vijver | S. Wilting | Marc J van de Vijver | Anne-Lise Børresen-Dale | Anieta M Sieuwerts | John A Foekens | Hendrik G Stunnenberg | Katharina Uhr | Andrea L Richardson | Marcel Smid | Vanja de Weerd | Steven Van Laere | V. de Weerd | A. van Galen | Colin A Purdie | K. Uhr | Michelle van der Vlugt-Daane | Gaëten MacGrogan | Paul N Span | Peter T Simpson | Tari King | Fred C G J Sweep | Helen R Davies | Anne van Galen | F Germán Rodríguez-González | Wendy J C Prager-Van der Smissen | Michelle van der Vlugt-Daane | Gaëten MacGrogan | Gert G G M van den Eynden | Jorunn Eyfjord | Andrew P Futreal | Mike Stratton | A. Galen | F. Sweep | S. V. Laere | Carlos Caldas | J. Martens | V. Weerd | M. V. D. Vlugt-Daane | Michelle van der Vlugt‐Daane | W. V. D. Smissen | Tari A. King | J. Martens | Andrew P Futreal | Michael R. Stratton | M. V. Vijver | Adam P. Butler | G. V. D. Eynden | Alastair M. Thompson | Peter T. Simpson | M. Stratton | C. Purdie | Katharina Uhr | Andrea L. Richardson | Gaëten MacGrogan | Roberto Salgado | Angelo Paradiso | Sunil R. Lakhani | Carlos Caldas | Michael R. Stratton | C. A. Purdie | Johan Staaf | H. G. Stunnenberg | FRED G.J. Sweep | Katharina Uhr | F. G. Rodríguez-González | Helen Davies | Marc J. van de Vijver | Gaëten MacGrogan | Roberto Salgado | Alastair M. Thompson | Angelo Paradiso | Alain Viari

[1]  Christoph Dieterich,et al.  Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. , 2015, Cell reports.

[2]  Yang Wang,et al.  Efficient backsplicing produces translatable circular mRNAs , 2015, RNA.

[3]  Benjamin J. Raphael,et al.  CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer , 2015, Genome Biology.

[4]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[5]  Feng Li,et al.  The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. , 2015, Clinical chemistry.

[6]  Hai-Feng Liang,et al.  Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. , 2017, American journal of cancer research.

[7]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[8]  Cuntao Lu,et al.  Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. , 2018, Biochemical and biophysical research communications.

[9]  Yi Xiao,et al.  Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis , 2018, International journal of oncology.

[10]  Doree Sitkoff,et al.  models homology modeling : From sequence alignments to structural A comparative study of available software for high-accuracy , 2005 .

[11]  Michael D. Wilson,et al.  The Evolutionary Landscape of Alternative Splicing in Vertebrate Species , 2012, Science.

[12]  M. Coca-Prados,et al.  Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells , 1979, Nature.

[13]  J. Martens,et al.  Genomic profiling of CHEK2*1100delC-mutated breast carcinomas , 2015, BMC Cancer.

[14]  Ling-Ling Chen,et al.  Complementary Sequence-Mediated Exon Circularization , 2014, Cell.

[15]  Jonathan M. Mudge,et al.  The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. , 2009, Genome research.

[16]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[17]  John W M Martens,et al.  Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer , 2008, Proceedings of the National Academy of Sciences.

[18]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[19]  G. Shan,et al.  Exon-intron circular RNAs regulate transcription in the nucleus , 2015, Nature Structural &Molecular Biology.

[20]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[21]  John N Weinstein,et al.  A stromal gene signature associated with inflammatory breast cancer , 2008, International journal of cancer.

[22]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[23]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[24]  J. Salzman,et al.  Detecting circular RNAs: bioinformatic and experimental challenges , 2016, Nature Reviews Genetics.

[25]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[26]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[27]  John W M Martens,et al.  Subtypes of breast cancer show preferential site of relapse. , 2008, Cancer research.

[28]  Juanjuan Zhao,et al.  MicroRNA-7: a promising new target in cancer therapy , 2015, Cancer Cell International.

[29]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[30]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[31]  Julia Salzman,et al.  Cell-Type Specific Features of Circular RNA Expression , 2013, PLoS genetics.

[32]  Marco Beccuti,et al.  Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis , 2018, Oncotarget.

[33]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[34]  Jiang-xia Zhao,et al.  Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis , 2015, Cell Research.

[35]  R. Wilson,et al.  Chromothripsis and Human Disease: Piecing Together the Shattering Process , 2012, Cell.

[36]  Crispin J. Miller,et al.  Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. , 2007, Cancer research.

[37]  E. Birney,et al.  Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration , 2016, Nature Communications.

[38]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[39]  J. Foekens,et al.  Evaluation of the ability of adjuvant tamoxifen‐benefit gene signatures to predict outcome of hormone‐naive estrogen receptor‐positive breast cancer patients treated with tamoxifen in the advanced setting , 2014, Molecular oncology.

[40]  C. Burge,et al.  Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues , 2012, Science.

[41]  Krishna R. Kalari,et al.  Circular RNAs and their associations with breast cancer subtypes , 2016, Oncotarget.

[42]  D. Bartel,et al.  Expanded identification and characterization of mammalian circular RNAs , 2014, Genome Biology.

[43]  J. Kjems,et al.  Circular RNAs in cancer: opportunities and challenges in the field , 2017, Oncogene.

[44]  Yu-qin Pan,et al.  The pro-metastasis effect of circANKS1B in breast cancer , 2018, Molecular Cancer.

[45]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[46]  Mieke Timmermans,et al.  How ADAM-9 and ADAM-11 Differentially From Estrogen Receptor Predict Response to Tamoxifen Treatment in Patients with Recurrent Breast Cancer: a Retrospective Study , 2005, Clinical Cancer Research.

[47]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..