First report of a newly discovered ediacaran biota from the irkineeva uplift, East Siberia

New Ediacara-type macrofossils are described from the Irkineeva Uplift of East Siberia, Russia. Preliminary field studies within the Taseeva Group reveal probable examples of the Ediacaran taxa Arkarua adami and Beltanelliformis minutae; the organo-sedimentary structure 'Arumberia'; and 'elephant skin' microbial mat fabrics. These impressions are consistent with a latest Ediacaran age for the units of the upper Taseeva Group, suggesting that they are tens of millions of years younger than has previously been reported. Large discoidal specimens from the upper part of the Sukhoy Pit Group, likely to be Middle Riphean (Mesoproterozoic) in age, are tentatively assigned to the taxon Nimbia occlusa, and are suggested to be microbial in origin. These discs, and a contemporaneous acritarch assemblage of long-ranging sphaeromorphic taxa, cannot be precisely geochronologically constrained at present, but are highly likely to be pre-Ediacaran in age. The Irkineeva finds supplement a diverse suite of Russian Ediacaran (Vendian) fossil localities, and may be of considerable importance in correlating disparate Meso- and Neoproterozoic stratigraphic units across the Siberian Platform. This report emphasises the largely unexplored potential of the Irkineeva Uplift for palaeontological study, and provides tantalising evidence for the preservation of Late Ediacaran macro-organisms in this region.

[1]  D. Grazhdankin,et al.  Late Riphean microbial colonies adapted to desiccating environments , 2012, Doklady Earth Sciences.

[2]  M. Leonov,et al.  Finding of the Ediacaran-Vendian fossils in the Far Taiga Deposits, Patom highlands , 2012, Stratigraphy and Geological Correlation.

[3]  G. Hulot,et al.  Toward constraining the long-term reversing behavior of the geodynamo: A new “Maya” superchron ̃1 billion years ago from the magnetostratigraphy of the Kartochka Formation (southwestern Siberia) , 2012 .

[4]  J. A. G. Vintaned,et al.  New Finds of Skeletal Fossils in the Terminal Neoproterozoic of the Siberian Platform and Spain , 2012 .

[5]  James G. Ogg,et al.  The Geologic Time Scale 2012 , 2012 .

[6]  A. Liu Reviewing the Ediacaran fossils of the Long Mynd, Shropshire , 2011 .

[7]  D. Grazhdankin,et al.  Kotlin regional stage in the South Urals , 2011 .

[8]  B. Sokolov The chronostratigraphic space of the lithosphere and the Vendian as a geohistorical subdivision of the Neoproterozoic , 2011 .

[9]  D. Grazhdankin,et al.  Lithogeochemistry of the Vendian fine-grained clastic rocks in the southern Vychegda trough , 2011 .

[10]  M. Brasier,et al.  Diverse microbially induced sedimentary structures from 1 Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland , 2011 .

[11]  D. McIlroy,et al.  John Salter and the Ediacara Fauna of the Longmyndian Supergroup , 2011 .

[12]  A. Ivantsov,et al.  Feeding traces of proarticulata—the Vendian metazoa , 2011 .

[13]  G. Kamenov,et al.  Glaciation and ~770 Ma Ediacara (?) Fossils from the Lesser Karatau Microcontinent, Kazakhstan , 2011 .

[14]  G. Akhmanov,et al.  Riphean basins of the central and western Siberian Platform , 2011 .

[15]  D. Grazhdankin,et al.  Redkino stage in evolution of Vendian macrophytes , 2011 .

[16]  M. Bazhenov,et al.  The origin of microcontinents in the Central Asian Orogenic Belt: Constraints from paleomagnetism and geochronology , 2011 .

[17]  A. Nozhkin,et al.  Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge , 2011 .

[18]  A. Ivantsov Paleontological evidence for the supposed precambrian occurrence of mollusks , 2010 .

[19]  K. Nagovitsin,et al.  Stratigraphic setting and age of the complex Tappania-bearing Proterozoic fossil biota of Siberia , 2010 .

[20]  M. Wingate,et al.  A one-billion-year gap in the Precambrian history of the southern Siberian Craton and the problem of the Transproterozoic supercontinent , 2010, American Journal of Science.

[21]  B. Kochnev,et al.  New data on biostratigraphy of the Vendian Nemakit-Daldynian stage in the southern Siberian platform , 2010 .

[22]  D. McIlroy,et al.  First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland , 2010 .

[23]  A. Kuznetsov,et al.  Stratotype of the Lower Riphean, the Burzyan Group of the Southern Urals: Lithostratigraphy, paleontology, geochronology, Sr- and C-isotopic characteristics of its carbonate rocks , 2009 .

[24]  D. Grazhdankin,et al.  Carbonate-hosted Avalon-type fossils in arctic Siberia , 2008 .

[25]  M. Fedonkin The Rise of Animals: Evolution and Diversification of the Kingdom Animalia , 2008 .

[26]  K. Nagovitsin,et al.  The Baikalian and Vendian sequences in the Lower Angara area (southwestern Siberian Platform) , 2007 .

[27]  V. V. Khomentovsky The Upper Riphean of the Yenisei Range , 2007 .

[28]  D. Grazhdankin,et al.  Ediacaran microbial colonies , 2007 .

[29]  H. Porada,et al.  Wrinkle structures—a critical review , 2007 .

[30]  J. Sovetov,et al.  Sedimentary basins in the southwestern Siberian craton: Late Neoproterozoic-Early Cambrian rifting and collisional events , 2007 .

[31]  U. Linnemann The evolution of the Rheic Ocean : from Avalonian-Cadomian active margin to Alleghenian-Variscan collision , 2007 .

[32]  D. Grazhdankin,et al.  U-Pb (SHRIMP II) age of zircons from ash beds of the chernokamen formation, Vendian Sylvitsa group (Central Urals) , 2006 .

[33]  Elena Golubkova,et al.  Main changes in microfossil communities throughout the Upper Proterozoic of Russia. (Changements majeurs dans les assemblages de microfossiles au cours du Protérozoïque supérieur de Russie) , 2005 .

[34]  A. Seilacher,et al.  Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift , 2005 .

[35]  S. Bengtson,et al.  SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota , 2004 .

[36]  D. Grazhdankin Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution , 2004, Paleobiology.

[37]  E. B. Sal’nikova,et al.  Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge , 2003 .

[38]  J. Reitner,et al.  Evidence of organic structures in Ediacara-type fossils and associated microbial mats , 2001 .

[39]  Wolfgang E. Krumbein,et al.  Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures , 2001 .

[40]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[41]  J. Hagadorn,et al.  EDIACARAN FOSSILS FROM THE SOUTHWESTERN GREAT BASIN, UNITED STATES , 2000, Journal of Paleontology.

[42]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .

[43]  S. Pelechaty Integrated chronostratigraphy of the Vendian System of Siberia: implications for a global stratigraphy , 1998, Journal of the Geological Society.

[44]  James W. Hagadorn,et al.  Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition , 1997 .

[45]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[46]  D. McIlroy,et al.  A reconsideration of the biogenicity of Arumberia banksi Glaessner & Walter , 1997 .

[47]  T. Cruse,et al.  Ediacaran fossils from the Stirling Range Formation, Western Australia , 1994 .

[48]  F. Mitrofanov,et al.  Precambrian geology of the USSR , 1993 .

[49]  E. Mountjoy,et al.  Ediacaran fossils and dubiofossils, Miette Group of Mount Fitzwilliam area, British Columbia , 1991 .

[50]  R. W. Frey,et al.  The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils , 1988 .

[51]  J. Gehling Earliest known echinoderm — a new Ediacaran fossil from the Pound Subgroup of South Australia , 1987 .

[52]  H. Hofmann The mid-Proterozoic Little Dal macrobiota, Mackenzie Mountains, north-west Canada , 1985 .

[53]  B. H. Bland Arumberia Glaessner & Walter, a review of its potential for correlation in the region of the Precambrian–Cambrian boundary , 1984, Geological Magazine.

[54]  T. Crimes,et al.  Trace fossils from the Nama Group (Precambrian-Cambrian) of Southwest Africa (Namibia) , 1982 .

[55]  M. A. Semikhatov,et al.  Riphean and Vendian of the USSR , 1981 .

[56]  M. House,et al.  The Origin of major invertebrate groups , 1981 .

[57]  H. Hofmann,et al.  Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada , 1979 .

[58]  M. Walter,et al.  New Precambrian fossils from the arumbera sandstone, Northern Territory, Australia , 1975 .

[59]  S. Alpert Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil , 1973 .

[60]  J. Salter On Fossil Remains in the Cambrian Rocks of the Longmynd and North Wales , 1856, Quarterly Journal of the Geological Society of London.