Modeling of spiral wound membrane desalination modules and plants – review and research priorities

Abstract Spiral Wound Membrane (SWM) modules are the basic components of modern desalination and water treatment technology. To advance this technology, a comprehensive SWM-element model and related performance simulator are indispensable tools. A flexible and efficient simulator is needed to optimize SWM modules, and to be integrated into general-purpose software for designing and monitoring/controlling entire desalination plants. Desirable features of SWM-model are outlined first, considering practical constraints. Reviewing related work, it is recognized that the complicated physico-chemical phenomena (and interactions) occurring in SWM-modules extend over several length- and time-scales, thus rendering impossible direct solution of the complete problem. Therefore, a tractable modeling-structure is needed, whereby properly correlated results of detailed studies (at small scale) on flow and mass transfer in spacer-filled channels, and sub-models representing the membrane function, are integrated into an appropriate modeling framework for a broad spatial domain, i.e. for performance simulation of entire SWM modules. Available steady-state models are reviewed and investigations toward development of dynamic simulators are outlined. Typical results are discussed of detailed two-dimensional distributions of process parameters, throughout the SWM-modules in a pressure vessel, for steady-state operation. An overall assessment of simulating SWM-module performance and of design-parameter effects, considering industry requirements, leads to suggestions on R&D priorities.

[1]  Richard L. Stover SWRO process simulator , 2008 .

[2]  Markus Busch,et al.  Engineering Aspects of Reverse Osmosis Module Design , 2010 .

[3]  S. A. Avlonitis,et al.  A unified model for the detailed investigation of membrane modules and RO plants performance , 2007 .

[4]  Jae-Hong Kim,et al.  Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes , 2009 .

[5]  Matthias Wessling,et al.  Multi-layer spacer geometries with improved mass transport , 2006 .

[6]  Baltasar Peñate,et al.  Reverse osmosis hybrid membrane inter-stage design: A comparative performance assessment , 2011 .

[7]  Vivek V. Ranade,et al.  Fluid dynamics of spacer filled rectangular and curvilinear channels , 2006 .

[8]  Chuyang Y. Tang,et al.  Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography , 2013 .

[9]  Ajay K. Mishra,et al.  A critical review of transport through osmotic membranes , 2014 .

[10]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[11]  Simon Tavener,et al.  Bifurcation for flow past a cylinder between parallel planes , 1995, Journal of Fluid Mechanics.

[12]  Miquel Rovira,et al.  Solution-diffusion-film model for the description of pressure-driven trans-membrane transfer of elec , 2011 .

[13]  Craig Roger Bartels,et al.  Performance advancement in the spiral wound RO/NF element design , 2008 .

[14]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[15]  Lianfa Song,et al.  A 2-D streamline upwind Petrov/Galerkin finite element model for concentration polarization in spiral wound reverse osmosis modules , 2004 .

[16]  Anthony G. Fane,et al.  Net-Type Spacers: Effect of Configuration on Fluid Flow Path and Ultrafiltration Flux , 1994 .

[17]  M. Elimelech,et al.  Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. , 2003, Environmental science & technology.

[18]  Johannes S. Vrouwenvelder,et al.  Effect of flow velocity, substrate concentration and hydraulic cleaning on biofouling of reverse osmosis feed channels , 2012 .

[19]  S. G. Yiantsios,et al.  A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number , 2009 .

[20]  Kuo-Lun Tung,et al.  The effect of curvature of a spacer-filled channel on fluid flow in spiral-wound membrane modules , 2008 .

[21]  Margaritis Kostoglou,et al.  Mathematical Analysis of the Meso-Scale Flow Field in Spiral-Wound Membrane Modules , 2011 .

[22]  Patricia M. Dove,et al.  The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-classical pathways , 2012 .

[23]  Jack Gilron,et al.  RO membrane mineral scaling in the presence of a biofilm , 2012 .

[24]  Ruben G. Carbonell,et al.  Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .

[25]  S. G. Yiantsios,et al.  Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics , 2007 .

[26]  Masaru Kurihara,et al.  Mega-ton Water System: Japanese national research and development project on seawater desalination and wastewater reclamation , 2013 .

[27]  Y. Winograd,et al.  Mass transfer in narrow channels in the presence of turbulence promoters , 1973 .

[28]  Herve Morvan,et al.  CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination , 2008 .

[29]  Anastasios J. Karabelas,et al.  Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure , 2012 .

[30]  Eric M.V. Hoek,et al.  Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes , 2009 .

[31]  P. Feron,et al.  The influence of separators on hydrodynamics and mass transfer in narrow cells: Flow visualisation , 1991 .

[32]  Gunnar Eigil Jonsson,et al.  OPTIMAL DESIGN AND PERFORMANCE OF SPIRAL WOUND MODULES II: ANALYTICAL METHOD , 1988 .

[33]  Seungjae Oh,et al.  Topology Optimization of Spacers for Maximizing Permeate Flux on Membrane Surface in Reverse Osmosis Channel , 2011, DAC 2011.

[34]  Michael K. Stenstrom,et al.  An unsteady-state model to predict concentration polarization in commercial spiral wound membranes , 1999 .

[35]  Eric M.V. Hoek,et al.  Modeling the effects of fouling on full-scale reverse osmosis processes , 2008 .

[36]  Dianne E. Wiley,et al.  Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration☆ , 1994 .

[37]  Dianne E. Wiley,et al.  Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow , 2007 .

[38]  Gianni Pedrizzetti,et al.  Flow about a circular cylinder between parallel walls , 2001, Journal of Fluid Mechanics.

[39]  Michel Dudeck,et al.  A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination , 2015 .

[40]  Margaritis Kostoglou,et al.  Incipient calcium carbonate scaling of desalination membranes in narrow channels with spacers—experimental insights , 2013 .

[41]  G. Schock,et al.  Mass transfer and pressure loss in spiral wound modules , 1987 .

[42]  Margaritis Kostoglou,et al.  Membrane desalination under constant water recovery – The effect of module design parameters on system performance , 2015 .

[43]  Abdul Latif Ahmad,et al.  Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel , 2005 .

[44]  T. J. Larson Reverse osmosis pilot plant operation: A spiral module concept , 1970 .

[45]  Lianfa Song,et al.  Concentration polarization in a narrow reverse osmosis membrane channel , 2009 .

[46]  B. Mikic,et al.  Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited , 1988, Journal of Fluid Mechanics.

[47]  Dianne E. Wiley,et al.  Novel spacer design improves observed flux , 2004 .

[48]  In Seok Kang,et al.  The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization , 1982 .

[49]  David F. Fletcher,et al.  A computational fluids dynamics study of buoyancy effects in reverse osmosis , 2004 .

[50]  Andriy Yaroshchuk,et al.  Solution-Diffusion–Electro-Migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions , 2013 .

[51]  C. P. Koutsou,et al.  Characteristics of permeate-side spacers of spiral wound membrane modules , 2013 .

[52]  Greg Leslie,et al.  Scaling prediction based on thermodynamic equilibrium calculation — scopes and limitations , 2009 .

[53]  M. Wilf,et al.  Optimization of seawater RO systems design , 2001 .

[54]  Margaritis Kostoglou,et al.  A mathematical study of the evolution of fouling and operating parameters throughout membrane sheets comprising spiral wound modules , 2012 .

[55]  Viriato Semiao,et al.  The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption☆ , 2002 .

[56]  Michele Ciofalo,et al.  CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis , 2014 .

[57]  Johannes S. Vrouwenvelder,et al.  Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices , 2009 .

[58]  Georges Belfort,et al.  An experimental study of electrodialysis hydrodynamics , 1972 .

[59]  Johannes S. Vrouwenvelder,et al.  Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data , 2010 .

[60]  Margaritis Kostoglou,et al.  Modeling scale formation in flat‐sheet membrane modules during water desalination , 2013 .

[61]  Anthony G. Fane,et al.  Optimal channel spacer design for ultrafiltration , 1991 .

[62]  Woo-Seung Kim,et al.  Optimization methodology to study/estimate permeability in reverse osmosis desalination , 2015 .

[63]  R. I. Kermode,et al.  Prediction of concentration polarization and flux behavior in reverse osmosis by numerical analysis , 1990 .

[64]  Thomas Melin,et al.  State-of-the-art of reverse osmosis desalination , 2007 .

[65]  Margaritis Kostoglou,et al.  The effect of spiral wound membrane element design characteristics on its performance in steady state desalination — A parametric study , 2014 .

[66]  Ian Lomax,et al.  Experiences of Dow in the field of seawater reverse osmosis , 2008 .

[67]  Pierre M. Adler,et al.  Porous media : geometry and transports , 1992 .

[68]  Viriato Semiao,et al.  Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers , 2003 .

[69]  Anastasios J. Karabelas,et al.  A novel system for continuous monitoring of salt rejection characteristics of individual membrane elements in desalination plants , 2012 .

[70]  Raphael Semiat,et al.  Energy issues in desalination processes. , 2008, Environmental science & technology.

[71]  A. J. Karabelas,et al.  Toward improvement of methods for predicting fouling of desalination membranes — The effect of permeate flux on specific fouling resistance , 2014 .

[72]  Margaritis Kostoglou,et al.  Incipient crystallization of sparingly soluble salts on membrane surfaces: The case of dead-end filtration with no agitation , 2011 .

[73]  M. Shakaib,et al.  CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels , 2009 .

[74]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Narrow Channel Walls. 1. Hydrodynamics , 2002 .

[75]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[76]  A. B. de Haan,et al.  Optimization of non-woven spacers by CFD and validation by experiments , 2002 .

[77]  C. P. Koutsou,et al.  Towards optimization of spacer geometrical characteristics for spiral wound membrane modules , 2010 .

[78]  Lennart Bergström,et al.  Pre-nucleation clusters as solute precursors in crystallisation. , 2014, Chemical Society reviews.

[79]  Mingheng Li,et al.  Energy Consumption in Spiral-Wound Seawater Reverse Osmosis at the Thermodynamic Limit , 2014 .

[80]  David F. Fletcher,et al.  Spiral wound modules and spacers - Review and analysis , 2004 .

[81]  Dianne E. Wiley,et al.  Ultrafiltration of whey protein solutions in spacer-filled flat channels , 1993 .

[82]  Matthias Wessling,et al.  Microstructured spacers for submerged membrane filtration systems , 2013 .

[83]  Anthony G Fane,et al.  Colloidal interactions and fouling of NF and RO membranes: a review. , 2011, Advances in colloid and interface science.

[84]  Margaritis Kostoglou,et al.  On the Fluid Mechanics of Spiral-Wound Membrane Modules , 2009 .

[85]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Channel Walls. 2. Mass-Transfer Enhancement , 2002 .

[86]  P. R. Neal,et al.  Estimation of foulant deposition across the leaf of a spiral-wound module☆ , 2002 .

[87]  Margaritis Kostoglou,et al.  Comprehensive simulation of flat-sheet membrane element performance in steady state desalination , 2013 .

[88]  A J Karabelas,et al.  On modeling incipient crystallization of sparingly soluble salts in frontal membrane filtration. , 2011, Journal of colloid and interface science.

[89]  Liang-sheng Lu,et al.  [Expression of fusion proteins in beta(2)GP I gene-transfected HEp-2 cells and its clinical application]. , 2002, Zhonghua yi xue za zhi.

[90]  Lianfa Song,et al.  Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel , 2006 .

[91]  F. Li,et al.  Experimental validation of CFD mass transfer simulations in flat channels with non-woven net spacers , 2004 .

[92]  J.L.C. Santos,et al.  Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD) , 2007 .

[93]  Kuo-Lun Tung,et al.  Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module , 2009 .

[94]  Ashkan Iranshahi,et al.  Static mixing spacers for spiral wound modules , 2013 .

[95]  Dianne E. Wiley,et al.  CFD simulations of net-type turbulence promoters in a narrow channel , 2001 .

[96]  Abdul Latif Ahmad,et al.  Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel , 2009 .

[97]  J. C. van Dijk,et al.  Theoretical optimization of spiral-wound and capillary nanofiltration modules , 1997 .

[98]  A. B. de Haan,et al.  Novel spacers for mass transfer enhancement in membrane separations , 2005 .

[99]  J. Fárková,et al.  The pressure drop in membrane module with spacers , 1991 .

[100]  Cristian Picioreanu,et al.  A two-dimensional mechanistic model for scaling in spiral wound membrane systems , 2014 .

[101]  Emad Alhseinat,et al.  A completely theoretical approach for assessing fouling propensity along a full-scale reverse osmosis process , 2012 .

[102]  S. G. Yiantsios,et al.  Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters , 2004 .

[103]  M. Shakaib,et al.  Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling , 2007 .

[104]  Yawei Du,et al.  Optimization of Reverse Osmosis Networks with Spiral-Wound Modules , 2012 .

[105]  Osamu Kuroda,et al.  Characteristics of flow and mass transfer rate in an electrodialyzer compartment including spacer , 1983 .

[106]  S Loeb Desalination Research in California. , 1965, Science.

[107]  Silvia Gallego,et al.  Results from 99 seawater RO membrane autopsies , 2013 .

[108]  Viriato Semiao,et al.  Mass-transfer entrance effects in narrow rectangular channels with ribbed walls or mesh-type spacers , 2012 .

[109]  Shyam S. Sablani,et al.  Influence of spacer thickness on permeate flux in spiral-wound seawater reverse osmosis systems , 2002 .

[110]  S. Avlonitis,et al.  Flow parameter profiles in the crossflow of a two-component fluid through semipermeable membranes , 1997 .

[111]  Viriato Semiao,et al.  Concentration polarisation and flow structure within nanofiltration spiral-wound modules with ladder-type spacers , 2004 .

[112]  Yoram Cohen,et al.  Numerical study of concentration polarization in a rectangular reverse osmosis membrane channel: Permeate flux variation and hydrodynamic end effects , 2007 .

[113]  David F. Fletcher,et al.  A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules , 2002 .

[114]  Joon Ha Kim,et al.  A fouling model for simulating long-term performance of SWRO desalination process , 2012 .

[115]  Kuo-Lun Tung,et al.  CFD simulation of fluid flow through spacer-filled membrane module : selecting suitable cell types for periodic boundary conditions , 2008 .

[116]  Kuo-Lun Tung,et al.  CFD analysis of the initial stages of particle deposition in spiral-wound membrane modules , 2012 .

[117]  Sandeep K. Karode,et al.  Flow visualization through spacer filled channels by computational fluid dynamics I. , 2001 .

[118]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[119]  P. R. Neal,et al.  The effect of filament orientation on critical flux and particle deposition in spacer-filled channels , 2003 .

[120]  Dianne E. Wiley,et al.  Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules , 2010 .

[121]  Vítor Geraldes,et al.  Simulation and optimization of medium-sized seawater reverse osmosis processes with spiral-wound modules , 2005 .

[122]  William B. Krantz,et al.  Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry , 1999 .

[123]  Abdul Latif Ahmad,et al.  Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel , 2006 .

[124]  David F. Fletcher,et al.  Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes , 2002 .

[125]  Christopher J. Gabelich,et al.  Reducing costs for large-scale desalting plants using large-diameter, reverse osmosis membranes , 2006 .

[126]  Anastasios J. Karabelas,et al.  Rheological and permeability characteristics of alginate fouling layers developing on reverse osmosis membranes during desalination , 2013 .

[127]  A. B. de Haan,et al.  Optimization of commercial net spacers in spiral wound membrane modules , 2002 .

[128]  V. Kottke,et al.  Effects of spacer geometry on pressure drop, mass transfer, mixing behavior, and residence time distribution , 1996 .

[129]  Noreddine Ghaffour,et al.  Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability , 2013 .

[130]  Raphael Semiat,et al.  Investigation of flow next to membrane walls , 2005 .

[131]  David Hasson,et al.  Rigorous modeling of the kinetics of calcium carbonate deposit formation , 2012 .

[132]  Ephraim M Sparrow,et al.  Reverse osmosis issues relating to pressure drop, mass transfer, turbulence, and unsteadiness , 2014 .

[133]  Joon Ha Kim,et al.  Development of a package model for process simulation and cost estimation of seawater reverse osmosis desalination plant , 2009 .

[134]  Yoram Cohen,et al.  A novel RO ex situ scale observation detector (EXSOD) for mineral scale characterization and early detection , 2007 .