A Malliavin Calculus method to study densities of additive functionals of SDE’s with irregular drifts

We present a general method which allows to use Malliavin Calculus for additive functionals of stochastic equations with irregular drift. This method uses the Girsanov theorem combined with Itô–Taylor expansion in order to obtain regularity properties for this density. We apply the methodology to the case of the Lebesgue integral of a diffusion with bounded and measurable drift. Résumé. On introduit une méthode générale qui permet l’utilisation du Calcul de Malliavin pour des fonctionnelles additives générées par des équations stochastiques avec une dérive irrégulière. Cette méthode utilise le théorème de Girsanov avec l’expansion d’Itô–Taylor pour obtenir la régularité de la densité. On applique cette méthodologie pour au cas de l’intégrale en temps d’une diffusion avec derive mesurable bornée. MSC: Primary 60H07; secondary 60H10

[1]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[2]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[3]  A. Veretennikov ON STRONG SOLUTIONS AND EXPLICIT FORMULAS FOR SOLUTIONS OF STOCHASTIC INTEGRAL EQUATIONS , 1981 .

[4]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[5]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[6]  S. Kusuoka,et al.  Applications of the Malliavin calculus, Part III , 1984 .

[7]  D. Stroock,et al.  Applications of the Malliavin calculus. II , 1985 .

[8]  R. Bass,et al.  Uniqueness for diffusions with piecewise constant coefficients , 1987 .

[9]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[10]  Daniel W. Stroock,et al.  Diffusion semigroups corresponding to uniformly elliptic divergence form operators , 1988 .

[11]  P. Protter Stochastic integration and differential equations , 1990 .

[12]  N. Portenko,et al.  Generalized Diffusion Processes , 1990 .

[13]  Shinzo Watanabe Fractional order Sobolev spaces on Wiener space , 1993 .

[14]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[15]  D. Nualart Analysis on Wiener space and anticipating stochastic calculus , 1998 .

[16]  Dirichlet processes associated to diffusions , 2001 .

[17]  Istvan Gyongy,et al.  On Stochastic Differential Equations with Locally Unbounded Drift , 2001 .

[18]  A. Kohatsu-Higa Lower Bounds for Densities of Uniformly Elliptic Non-homogeneous Diffusions , 2003 .

[19]  N. Krylov,et al.  On weak uniqueness for some diffusions with discontinuous coefficients , 2004 .

[20]  P. Lions,et al.  Renormalized solutions of some transport equations with partially W1,1 velocities and applications , 2004 .

[21]  Michael Röckner,et al.  Strong solutions of stochastic equations with singular time dependent drift , 2005 .

[22]  Xicheng Zhang,et al.  Strong solutions of SDES with singular drift and Sobolev diffusion coefficients , 2005 .

[23]  V. Bally Lower bounds for the density of locally elliptic Itô processes , 2006, math/0702879.

[24]  Alessio Figalli,et al.  Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients , 2008 .

[25]  P. Lions,et al.  Existence and Uniqueness of Solutions to Fokker–Planck Type Equations with Irregular Coefficients , 2008 .

[26]  G. Yin,et al.  Hybrid Switching Diffusions: Properties and Applications , 2009 .

[27]  F. Flandoli Remarks on uniqueness and strong solutions to deterministic and stochastic differential equations , 2009 .

[28]  D. Nualart Malliavin Calculus and Its Applications , 2009 .

[29]  E. Fedrizzi,et al.  Pathwise uniqueness and continuous dependence for SDEs with non-regular drift , 2010, 1004.3485.

[30]  G. Mate,et al.  Fractional order Sobolev spaces , 2012 .