Preconditioned iterative methods for sparse linear algebra problems arising in circuit simulation
暂无分享,去创建一个
Layne T. Watson | Calvin J. Ribbens | R. C. Melville | L. Watson | C. Ribbens | R. Melville | William D. McQuain
[1] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[2] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[3] Layne T. Watson,et al. Preconditioned Iterative Methods for Homotopy Curve Tracking , 1992, SIAM J. Sci. Comput..
[4] L. Watson. Numerical linear algebra aspects of globally convergent homotopy methods , 1986 .
[5] Layne T. Watson. A Survey of Probability-One Homotopy Methods for EngineeringOptimization , 1990 .
[6] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[7] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[8] L. Watson,et al. HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .
[9] L. Watson. A globally convergent algorithm for computing fixed points of C2 maps , 1979 .
[10] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[11] R.C. Melville,et al. Finding DC operating points of transistor circuits using homotopy methods , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.
[12] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[13] Layne T. Watson,et al. Algorithm 555: Chow-Yorke Algorithm for Fixed Points or Zeros of C2 Maps [C5] , 1980, TOMS.
[14] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[15] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[16] Å. Björck,et al. Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations , 1979 .
[17] L. Trajkovic,et al. Passivity and no-gain properties establish global convergence of a homotopy method for DC operating points , 1990, IEEE International Symposium on Circuits and Systems.
[18] L. Watson. An Algorithm That is Globally Convergent with Probability One for a Class of Nonlinear Two-Point Boundary Value Problems , 1979 .
[19] L. T. Watson,et al. Globally convergent homotopy methods: a tutorial , 1989, Conference on Numerical Ordinary Differential Equations.
[20] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[21] Ahmed H. Sameh,et al. Row Projection Methods for Large Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[22] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[23] Homer F. Walker,et al. Implementations of the GMRES method , 1989 .
[24] J. Yorke,et al. Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .
[25] Layne T. Watson,et al. Experiments with Conjugate Gradient Algorithms for Homotopy Curve Tracking , 1991, SIAM J. Optim..
[26] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[27] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[28] Layne T. Watson,et al. Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.
[29] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.