Direct aqueous carbonation of heat activated serpentine: Discovery of undesirable side reactions reducing process efficiency

[1]  E. Benhelal,et al.  “ACEME”: Synthesis and characterization of reactive silica residues from two stage mineral carbonation Process , 2018, Environmental Progress & Sustainable Energy.

[2]  E. Benhelal,et al.  Study on mineral carbonation of heat activated lizardite at pilot and laboratory scale , 2018, Journal of CO2 Utilization.

[3]  E. Benhelal,et al.  The utilisation of feed and byproducts of mineral carbonation processes as pozzolanic cement replacements , 2018, Journal of Cleaner Production.

[4]  J. Blais,et al.  Aqueous mineral carbonation for CO2 sequestration: From laboratory to pilot scale , 2017 .

[5]  J. Blais,et al.  Effect of pCO2 on direct flue gas mineral carbonation at pilot scale. , 2017, Journal of environmental management.

[6]  J. Blais,et al.  Aqueous mineral carbonation of serpentinite on a pilot scale: The effect of liquid recirculation on CO2 sequestration and carbonate precipitation , 2016 .

[7]  M. Maroto-Valer,et al.  A review of mineral carbonation technologies to sequester CO2. , 2014, Chemical Society reviews.

[8]  M. Mazzotti,et al.  Flue gas CO2 mineralization using thermally activated serpentine: from single- to double-step carbonation. , 2014, Physical chemistry chemical physics : PCCP.

[9]  S. Kentish,et al.  Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions. , 2014, Environmental science & technology.

[10]  R. Chiriac,et al.  Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity , 2014 .

[11]  H. Wenk,et al.  Antigorite crystallographic preferred orientations in serpentinites from Japan , 2014 .

[12]  B. Dlugogorski,et al.  Dehydroxylation of serpentine minerals: Implications for mineral carbonation , 2014 .

[13]  T. G. Oliveira,et al.  Textural properties of nickel, palladium and titanium oxides supported on MCM-41 materials and their application on oxidative desulfurization of dibenzothiophene , 2013 .

[14]  B. Dlugogorski,et al.  Energy cost of heat activating serpentinites for CO2 storage by mineralisation , 2013 .

[15]  I. Kozhevnikov,et al.  High catalytic activity of silicalite in gas-phase ketonisation of propionic acid. , 2013, Chemical communications.

[16]  Reydick D. Balucan Thermal Studies of magnesium silicates from the Great Serpentinite Belt in New South Wales for CO2 sequestration by mineral carbonation in Australia , 2013 .

[17]  M. Mazzotti,et al.  Carbonation of Activated Serpentine for Direct Flue Gas Mineralization , 2013 .

[18]  M. Putz,et al.  Spectral Inverse Quantum (Spectral-IQ) Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR , 2012, International journal of molecular sciences.

[19]  J. Petrie,et al.  Mineral Carbonation as the Core of an Industrial Symbiosis for Energy‐Intensive Minerals Conversion , 2012 .

[20]  M. Mookherjee,et al.  Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures , 2011 .

[21]  B. Garcia,et al.  Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2 , 2011 .

[22]  A. Putnis,et al.  Effect of secondary phase formation on the carbonation of olivine. , 2010, Environmental science & technology.

[23]  C. Airoldi,et al.  Performance of natural and modified smectite: kinetic and thermodynamics involving arsenic (V) adsorption , 2010 .

[24]  I. Martinez,et al.  Experimental study of Mg-rich silicates carbonation at 400 and 500 °C and 1 kbar , 2009 .

[25]  Gang Wang,et al.  Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study , 2009 .

[26]  Klaus S. Lackner,et al.  Enhancing process kinetics for mineral carbon sequestration , 2009 .

[27]  R. Kuusik,et al.  Production of magnesium carbonates from serpentinite for long-term storage of CO2 , 2007 .

[28]  Klzulrr Irsur Synthesis of Antigorite , 2007 .

[29]  Qian Wang,et al.  Surface confined ionic liquid as a stationary phase for HPLC. , 2006, The Analyst.

[30]  K. Squires,et al.  Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. , 2006, Environmental science & technology.

[31]  C. Sanchez,et al.  An in situ study of mesostructured CTAB-silica film formation using infrared ellipsometry: evolution of water content , 2004 .

[32]  B. V. L’vov,et al.  Kinetics of free-surface decomposition of magnesium, strontium and barium carbonates analyzed thermogravimetrically by the third-law method , 2004 .

[33]  Hojatollah Vali,et al.  Hydrothermal alteration of olivine in a flow-through autoclave: Nucleation and growth of serpentine phases , 2002 .

[34]  B. V. L’vov Mechanism and kinetics of thermal decomposition of carbonates , 2002 .

[35]  J. Linares,et al.  Insights into the antigorite structure from Mössbauer and FTIR spectroscopies , 2002 .

[36]  Jan Środoń,et al.  Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations , 2001 .

[37]  L. Stixrude,et al.  The 10Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere , 2001 .

[38]  O. Pokrovsky,et al.  Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach , 2000 .

[39]  K. Stern High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions , 2000 .

[40]  F. Wicks Status of the reference X-ray powder-diffraction patterns for the serpentine minerals in the PDF database—1997 , 2000, Powder Diffraction.

[41]  Klaus S. Lackner,et al.  Carbon dioxide disposal in carbonate minerals , 1995 .

[42]  K. MacKenzie,et al.  Thermal reactions of chrysotile revisited; a 29 Si and 25 Mg MAS NMR study , 1994 .

[43]  Michael F. Hochella,et al.  The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions , 1990 .

[44]  G. W. Arnold,et al.  Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12 , 1988 .

[45]  W. Fyfe,et al.  Rate of serpentinization in seafloor environments , 1985 .

[46]  Haruo Shirozu,et al.  Variations in chemical composition and structural properties of antigorites. , 1985 .

[47]  G. Brindley,et al.  Quantitative X-ray Mineral Analysis of Clays , 1980 .

[48]  S. Popović,et al.  The doping method in quantitative X-ray diffraction phase analysis , 1979 .

[49]  L. Caruso,et al.  The stability of lizardite , 1978 .

[50]  K. Yada,et al.  Growth and microstructure of synthetic chrysotile , 1977 .

[51]  D. R. Lloyd The infrared spectra of minerals , 1975 .

[52]  S. Yariv,et al.  The Relationship between the I.R. Spectra of Serpentines and Their Structures , 1975 .

[53]  P. S. Santos,et al.  Antigorite—Its Occurrence As a Clay Mineral , 1971 .

[54]  W. Johannes,et al.  Experimental investigation of the reaction forsterite + H2O ⇌ serpentine + brucite , 1968 .