The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov-Maxwell equations

We discuss the development, analysis, implementation, and numerical assessment of a spectral method for the numerical simulation of the three-dimensional Vlasov-Maxwell equations. The method is based on a spectral expansion of the velocity space with the asymmetrically weighted Hermite functions. The resulting system of time-dependent nonlinear equations is discretized by the discontinuous Galerkin (DG) method in space and by the method of lines for the time integration using explicit Runge-Kutta integrators. The resulting code, called Spectral Plasma Solver (SPS-DG), is successfully applied to standard plasma physics benchmarks to demonstrate its accuracy, robustness, and parallel scalability.

[1]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[2]  Gianmarco Manzini,et al.  Convergence of Spectral Discretizations of the Vlasov-Poisson System , 2016, SIAM J. Numer. Anal..

[3]  Gian Luca Delzanno,et al.  On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods , 2016, Comput. Phys. Commun..

[4]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[5]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[6]  S. Peter Gary,et al.  Theory of Space Plasma Microinstabilities , 1993 .

[7]  Alexander J. Klimas,et al.  A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. [in earth bow shock region , 1983 .

[8]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[9]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system , 2014, J. Comput. Phys..

[10]  L. Fazendeiro,et al.  Viriato: A Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics , 2015, Comput. Phys. Commun..

[11]  Uri Shumlak,et al.  A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations , 2010, 1003.4542.

[12]  J. Vencels The Hermite-Fourier spectral method for solving the Vlasov-Maxwell system of equations , 2016 .

[13]  V. Roytershteyn,et al.  High‐Frequency Plasma Waves and Pitch Angle Scattering Induced by Pulsed Electron Beams , 2019, Journal of Geophysical Research: Space Physics.

[14]  E. Wigner On the Matrices Which Reduce the Kronecker Products of Representations of S. R. Groups , 1993 .

[15]  Christopher H. K. Chen,et al.  Numerical Study of Inertial Kinetic-Alfvén Turbulence , 2019, The Astrophysical Journal.

[16]  Vladimir Kolobov,et al.  Towards adaptive kinetic-fluid simulations of weakly ionized plasmas , 2012, J. Comput. Phys..

[17]  Liang Wang,et al.  Comparison of multi-fluid moment models with Particle-in-Cell simulations of collisionless magnetic reconnection , 2014, 1409.0262.

[18]  Uri Shumlak,et al.  A discontinuous Galerkin method for the full two-fluid plasma model , 2005, Comput. Phys. Commun..

[19]  W. Matthaeus,et al.  Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma , 2007, 0801.0107.

[20]  Gian Luca Delzanno,et al.  New approach for the study of linear Vlasov stability of inhomogeneous systems , 2006 .

[21]  S. Gary,et al.  Whistler anisotropy instability at low electron β: Particle-in-cell simulations , 2011 .

[22]  Benjamin Bergen,et al.  0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on roadrunner , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[23]  James Paul Holloway,et al.  Spectral velocity discretizations for the Vlasov-Maxwell equations , 1996 .

[24]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[25]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[26]  Ruo Li,et al.  Solving Vlasov Equations Using NRxx Method , 2012, SIAM J. Sci. Comput..

[27]  D. Winske Hybrid simulation codes with application to shocks and upstream waves , 1985 .

[28]  R. C. Harding,et al.  SOLUTION OF VLASOV'S EQUATION BY TRANSFORM METHODS. , 1970 .

[29]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[30]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[31]  Stefano Markidis,et al.  Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model , 2014, J. Comput. Phys..

[32]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[33]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[34]  Kai Germaschewski,et al.  Electron Physics in 3‐D Two‐Fluid 10‐Moment Modeling of Ganymede's Magnetosphere , 2018, 1802.02198.

[35]  V. Roytershteyn,et al.  Spectral Approach to Plasma Kinetic Simulations Based on Hermite Decomposition in the Velocity Space , 2018, Front. Astron. Space Sci..

[36]  Richard M. Thorne,et al.  Radiation belt dynamics: The importance of wave‐particle interactions , 2010 .

[37]  Yingda Cheng,et al.  Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..

[38]  Joseph W. Schumer,et al.  Vlasov Simulations Using Velocity-Scaled Hermite Representations , 1998 .

[39]  Randall J. LeVeque,et al.  Numerical methods for conservation laws (2. ed.) , 1992, Lectures in mathematics.

[40]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system , 2013, J. Comput. Phys..

[41]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[42]  S. Wing,et al.  Formation and transport of entropy structures in the magnetotail simulated with a 3‐D global hybrid code , 2017 .

[43]  Uri Shumlak,et al.  Numerical Methods for Two-Fluid Dispersive Fast MHD Phenomena , 2011 .

[44]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[45]  S. Markidis,et al.  Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede's magnetosphere , 2014 .

[46]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[47]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[48]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[49]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[50]  B. A. Dios,et al.  HIGH ORDER AND ENERGY PRESERVING DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-POISSON SYSTEM , 2012, 1209.4025.

[51]  Kanya Kusano,et al.  Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model , 2007, J. Comput. Phys..

[52]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[53]  William Daughton,et al.  Advances in petascale kinetic plasma simulation with VPIC and Roadrunner , 2009 .

[54]  E. G. Harris On a plasma sheath separating regions of oppositely directed magnetic field , 1962 .

[55]  Dieter Biskamp,et al.  Magnetic reconnection in plasmas , 2000 .

[56]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[57]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[58]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[59]  Paul J. Dellar,et al.  Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit , 2014, Journal of Plasma Physics.

[60]  Erwin Laure,et al.  Spectral Solver for Multi-scale Plasma Physics Simulations with Dynamically Adaptive Number of Moments , 2015, ICCS.

[61]  Ruo Li,et al.  Filtered Hyperbolic Moment Method for the Vlasov Equation , 2017, J. Sci. Comput..

[62]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[63]  G. Joyce,et al.  Numerical integration methods of the Vlasov equation , 1971 .

[64]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[65]  José A. Morales Escalante,et al.  Galerkin methods for Boltzmann-Poisson transport with reflection conditions on rough boundaries , 2018, J. Comput. Phys..

[66]  Yann Brenier,et al.  The multi-water-bag equations for collisionless kinetic modeling , 2009 .

[67]  Yingda Cheng,et al.  A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices , 2009, 0902.3514.

[68]  H. Gajewski,et al.  On the convergence of the Fourier-Hermite transformation method for the Vlasov equation with an artificial collision term , 1977 .

[69]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[70]  C. Caputo,et al.  Cholesterol removal from adult skeletal muscle impairs excitation–contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins , 2015, Front. Physiol..

[71]  E. Camporeale,et al.  Fourier–Hermite decomposition of the collisional Vlasov–Maxwell system: implications for the velocity-space cascade , 2018, Plasma Physics and Controlled Fusion.

[72]  Urs Ganse,et al.  Vlasov methods in space physics and astrophysics , 2018, Living reviews in computational astrophysics.

[73]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[74]  Gianmarco Manzini,et al.  Arbitrary-order time-accurate semi-Lagrangian spectral approximations of the Vlasov-Poisson system , 2018, J. Comput. Phys..

[75]  Gianmarco Manzini,et al.  SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas , 2016 .

[76]  Yingda Cheng,et al.  A brief survey of the discontinuous Galerkin method for the Boltzmann-Poisson equations , 2011 .

[77]  S. Markidis,et al.  Global Three‐Dimensional Simulation of Earth's Dayside Reconnection Using a Two‐Way Coupled Magnetohydrodynamics With Embedded Particle‐in‐Cell Model: Initial Results , 2017, 1704.03803.

[78]  R. LeVeque Numerical methods for conservation laws , 1990 .

[79]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[80]  Gian Luca Delzanno,et al.  A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system , 2016, J. Comput. Phys..

[81]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[82]  Eric Shi,et al.  Discontinuous Galerkin algorithms for fully kinetic plasmas , 2017, J. Comput. Phys..

[83]  D. Biskamp,et al.  Dynamics of Decaying Two-Dimensional Magnetohydrodynamic Turbulence , 1988 .

[84]  Zhenning Cai,et al.  Suppression of Recurrence in the Hermite-Spectral Method for Transport Equations , 2018, SIAM J. Numer. Anal..

[85]  Blanca Ayuso de Dios,et al.  DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .

[86]  Ruo Li,et al.  Globally Hyperbolic Regularization of Grad's Moment System , 2012 .

[87]  Gian Luca Delzanno,et al.  Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form , 2015, J. Comput. Phys..

[88]  D. Funaro,et al.  A Semi-Lagrangian Spectral Method for the Vlasov–Poisson System Based on Fourier, Legendre and Hermite Polynomials , 2018, Communications on Applied Mathematics and Computation.

[89]  U. Shumlak,et al.  Physics-Based-Adaptive Plasma Model for High-Fidelity Numerical Simulations , 2018, Front. Phys..

[90]  Jacob E. Fromm,et al.  The recurrence of the initial state in the numerical solution of the Vlasov equation , 1974 .

[91]  Yingda Cheng,et al.  Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..

[92]  Yingda Cheng,et al.  Discontinuous Galerkin solver for Boltzmann-Poisson transients , 2008 .

[93]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[94]  D. Winske,et al.  HYBRID SIMULATION CODES WITH APPLICATION TO SHOCKS AND UPSTREAM WAVES , 1985 .

[95]  José A. Carrillo,et al.  Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .