Measurement and modeling of radiation-induced grain boundary grain boundary segregation in stainless steels
暂无分享,去创建一个
Grain boundary radiation-induced segregation (RIS) in Fe-Ni-Cr stainless alloys has been measured and modelled as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550{degrees}C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350{degrees}C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si levels peaked at an intermediate temperature of {approximately}325{degrees}C reaching levels of {approximately}8 at. %. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Examination of reported RIS in neutron-irradiated stainless steels revealed similar effects of irradiation dose on grain boundary compositional changes for both major alloying and impurity element`s. The Inverse Kirkendall model accurately predicted major alloying element RIS in ion- and neutron-irradiated alloys over the wide range of temperature and dose conditions. In addition, preliminary calculations indicate that the Johnson-Lam model can reasonably estimate grain boundary Si enrichment if back diffusion is enhanced.