Dispersion in GeO 2 –SiO 2 glasses

Germania glass was prepared from high purity GeO2 powder. Refractive-index dispersion was used to calculate material dispersion and to provide a model for representing the dispersion of GeO2–SiO2 glasses. The wavelength of zero material dispersion is found to be in agreement with theoretical calculations. Modal propagation is modeled for a GeO2 core–silica clad fiber. Results support compositional dependence of profile dispersion in GeO2–SiO2 fibers.

[1]  I P Kaminow,et al.  Binary silica optical fibers: refractive index and profile dispersion measurements. , 1976, Applied optics.

[2]  Satoshi Shibata,et al.  Refractive index dispersion of lightguide glasses at high temperature , 1981 .

[3]  J. Fleming,et al.  Material dispersion in lightguide glasses , 1978 .

[4]  A. Sarkar,et al.  Relationship between composition, density and refractive index for germania silica glasses , 1978 .

[5]  S. H. Wemple Material dispersion in optical fibers. , 1979, Applied optics.

[6]  S. H. Wemple,et al.  Binary SiO2–B2O3 glass system: Refractive index behavior and energy gap considerations , 1973 .

[7]  R. Olshansky,et al.  Pulse broadening in graded-index optical fibers. , 1976, Applied optics.

[8]  U. Paek,et al.  Numerical calculation of optimum α for a germania-doped silica lightguide , 1981, The Bell System Technical Journal.

[9]  J. A. Arnaud,et al.  Pulse broadening in multimode optical fibers , 1975, The Bell System Technical Journal.

[10]  Chinlon Lin,et al.  Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. , 1977, Applied optics.

[11]  J. Arnaud,et al.  Pulse broadening in multimode optical fibres with large Δn/n: numerical results , 1976 .

[12]  K. B. Lyons,et al.  Nondestructive concentration profiling of fiber optic preforms by analysis of Raman spectra , 1981 .

[13]  G. G. Devyatykh,et al.  BRIEF COMMUNICATIONS: Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides , 1980 .

[14]  M. Adams,et al.  Definitive profile-dispersion data for germania-doped silica fibres over an extended wavelength range , 1979 .

[15]  T. Izawa,et al.  Effect of dopants on transmission loss of low-OH-content optical fibres , 1976 .

[16]  J. Fleming,et al.  Material and Mode Dispersion in GeO2·B2O3·SiC2 Glasses , 1976 .

[17]  J. Fleming,et al.  Computerized refractive index measurements for bulk materials at UV, visible, and IR wavelengths , 1982 .

[18]  David N. Payne,et al.  Determination of the wavelength of zero material dispersion in optical fibres by pulse-delay measurements , 1977 .

[19]  K. Nassau The material dispersion zero in infrared optical waveguide materials , 1981, The Bell System Technical Journal.

[20]  H. Saint-Jalmes,et al.  Powerful timing generator using mono‐chip timers: An application to pulsed nuclear magnetic resonance , 1982 .

[21]  C. R. Hammond Silica-based binary glass systems: wavelength dispersive properties and composition in optical fibres , 1978 .

[22]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .