Mechanics of carbon nanoscrolls: A review

[1]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[2]  M S Sansom,et al.  Biophysics: Water at the nanoscale , 2001, Nature.

[3]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[4]  Petros Koumoutsakos,et al.  Carbon nanotubes in water:structural characteristics and energetics , 2001 .

[5]  Richard B. Kaner,et al.  A Chemical Route to Carbon Nanoscrolls , 2003, Science.

[6]  T. Akita,et al.  A new route to carbon nanotubes , 2003 .

[7]  Klaus Schulten,et al.  Water and proton conduction through carbon nanotubes as models for biological channels. , 2003, Biophysical journal.

[8]  N. Aluru,et al.  Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes , 2003 .

[9]  Ray H. Baughman,et al.  Structure and dynamics of carbon nanoscrolls , 2004 .

[10]  Jingyuan Li,et al.  Controllable water channel gating of nanometer dimensions. , 2005, Journal of the American Chemical Society.

[11]  H. Pan,et al.  Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet , 2005 .

[12]  D. Galvão,et al.  Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations , 2006 .

[13]  Huajian Gao,et al.  Molecular-dynamic studies of carbon-water-carbon composite nanotubes. , 2006, Small.

[14]  P. Lambin,et al.  Computation of the static polarizabilities of multi-wall carbon nanotubes and fullerites using a Gaussian regularized point dipole interaction model , 2006 .

[15]  X. Gong,et al.  Electrostatic gating of a nanometer water channel , 2007, Proceedings of the National Academy of Sciences.

[16]  V. Mochalin,et al.  Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds , 2007 .

[17]  X. Gong,et al.  A charge-driven molecular water pump. , 2007, Nature nanotechnology.

[18]  R. Baughman,et al.  Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study , 2007 .

[19]  Jing Lu,et al.  Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet , 2007 .

[20]  Emmanuel Tylianakis,et al.  Carbon nanoscrolls: a promising material for hydrogen storage. , 2007, Nano letters.

[21]  S. F. Braga,et al.  Prediction of the hydrogen storage capacity of carbon nanoscrolls , 2007 .

[22]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[23]  M. Milton,et al.  Synthesis and Raman spectroscopic characterisation of carbon nanoscrolls , 2008 .

[24]  N. Aluru,et al.  Pumping of confined water in carbon nanotubes by rotation-translation coupling. , 2008, Physical review letters.

[25]  Xiaoyi Li,et al.  Carbon nanotube based artificial water channel protein: membrane perturbation and water transportation. , 2009, Nano letters.

[26]  A. Chuvilin,et al.  Chiral carbon nanoscrolls with a polygonal cross-section , 2009 .

[27]  Quanzi Yuan,et al.  Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. , 2009, Journal of the American Chemical Society.

[28]  Huajian Gao,et al.  Gigahertz breathing oscillators based on carbon nanoscrolls , 2009 .

[29]  Xu Xie,et al.  Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. , 2009, Nano letters.

[30]  N. English,et al.  Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields , 2009 .

[31]  P. Král,et al.  Nanodroplet activated and guided folding of graphene nanostructures. , 2009, Nano letters.

[32]  Carbon nanotube initiated formation of carbon nanoscrolls , 2010, 1111.4458.

[33]  Huajian Gao,et al.  Tunable core size of carbon nanoscrolls , 2010 .

[34]  D. Galvão,et al.  Curved graphene nanoribbons: structure and dynamics of carbon nanobelts , 2010, Nanotechnology.

[35]  Huajian Gao,et al.  Tunable water channels with carbon nanoscrolls. , 2010, Small.

[36]  Zhiping Xu,et al.  Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. , 2010, ACS nano.

[37]  Huajian Gao,et al.  A translational nanoactuator based on carbon nanoscrolls on substrates , 2010 .

[38]  F. Guinea,et al.  Effect of external conditions on the structure of scrolled graphene edges , 2010, 1002.3418.

[39]  Huajian Gao,et al.  Constitutive behavior of pressurized carbon nanoscrolls , 2011 .