Step-like band alignment and stacking-dependent band splitting in trilayer TMD heterostructures.

We propose for the first time a kind of van der Waals (vdW) heterostructure composed of three distinct transition-metal dichalcogenide (TMD) monolayers, where step-like band alignment could be realized. In this case, excitons can be spatially separated into constituent top and bottom layers segregated by the middle layer. In light of the reduced binding energy and long lifetime of the interlayer excitons, trilayer TMD heterostructures hold great promise in applications such as solar cells and light-harvesting. In addition, heterostructures with different constituents and stacking orders give rise to distinct band offsets between neighboring layers. Other factors, like strain and SOC, also have apparent effects on the band offset. Our results reveal that 2H stacking can enhance valence band splitting, while 3R stacking has a significant influence on conduction band splitting. On account of the proper step-like band alignment and stacking-dependent band splitting, these trilayer TMD heterostructures also have great potential for applications in spintronics.

[1]  Sachin M. Shinde,et al.  Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2 , 2018 .

[2]  A. Ayuela,et al.  Stacking change in MoS2 bilayers induced by interstitial Mo impurities , 2017, Scientific Reports.

[3]  Yong-Wei Zhang,et al.  From two-dimensional nano-sheets to roll-up structures: expanding the family of nanoscroll , 2017, Nanotechnology.

[4]  H. Jeong,et al.  Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer , 2017, Nano letters.

[5]  K. Thygesen Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures , 2017 .

[6]  Lain‐Jong Li,et al.  Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions , 2017 .

[7]  Shoushun Chen,et al.  Valley polarization in stacked MoS2 induced by circularly polarized light , 2017, Nano Research.

[8]  Litao Sun,et al.  Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures , 2016, Scientific Reports.

[9]  G. Flynn,et al.  Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. , 2016, Nano letters.

[10]  J. Robertson,et al.  Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures , 2016 .

[11]  P. Ajayan,et al.  Strain-Induced Electronic Structure Changes in Stacked van der Waals Heterostructures. , 2016, Nano letters.

[12]  S. Koester,et al.  Band Alignment of 2D Semiconductors for Designing Heterostructures with Momentum Space Matching , 2016, 1603.02619.

[13]  Wang Yao,et al.  Valley-polarized exciton dynamics in a 2D semiconductor heterostructure , 2016, Science.

[14]  J. Tersoff,et al.  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature Communications.

[15]  Shoushun Chen,et al.  Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry. , 2015, Nano letters.

[16]  B. Sumpter,et al.  Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. , 2015, ACS nano.

[17]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[18]  A. Janotti,et al.  Nature and evolution of the band-edge states in MoS 2 : From monolayer to bulk , 2014 .

[19]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[20]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[21]  C. Felser,et al.  First-principles investigation of the bulk and low-index surfaces of MoSe2 , 2014 .

[22]  Xiaojun Wu,et al.  van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. , 2014, Nanoscale.

[23]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[24]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[25]  Su-Yang Xu,et al.  Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2 , 2013, Nature Communications.

[26]  A. Neto,et al.  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[27]  Arkady V. Krasheninnikov,et al.  Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles , 2013, 1308.5061.

[28]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[29]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[30]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[31]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[32]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[33]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[34]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[35]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[36]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[37]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[38]  J. M. Baik,et al.  Band-gap transition induced by interlayer van der Waals interaction in MoS 2 , 2011 .

[39]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[40]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[41]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[45]  Geoffrey Pourtois,et al.  Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 , 2011, Nano Research.