Confidence-based dynamic ensemble for image annotation and semantics discovery

Providing accurate and scalable solutions to map low-level perceptual features to high-level semantics is critical for multimedia information organization and retrieval. In this paper, we propose a confidence-based dynamic ensemble (CDE) to overcome the shortcomings of the traditional static classifiers. In contrast to the traditional models, CDE can make dynamic adjustments to accommodate new semantics, to assist the discovery of useful low-level features, and to improve class-prediction accuracy. We depict two key components of CDE: a multi-level function that asserts class-prediction confidence, and the dynamic ensemble method based upon the confidence function. Through theoretical analysis and empirical study, we demonstrate that CDE is effective in annotating large-scale, real-world image datasets.

[1]  Pamela R. Lipson,et al.  Context and configuration based scene classification , 1996 .

[2]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[3]  Wei-Ying Ma,et al.  Learning and inferring a semantic space from user's relevance feedback for image retrieval , 2002, MULTIMEDIA '02.

[4]  Edward Y. Chang,et al.  Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning , 2003, ICML.

[5]  Samy Bengio,et al.  SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..

[6]  Rohini K. Srihari,et al.  Intelligent Indexing and Semantic Retrieval of Multimodal Documents , 2004, Information Retrieval.

[7]  Edward Y. Chang,et al.  SVM binary classifier ensembles for image classification , 2001, CIKM '01.

[8]  Wei-Ying Ma,et al.  Improving Image Retrieval with Semantic Classification Using Relevance Feedback , 2002, VDB.

[9]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[10]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[13]  Javier Muguerza,et al.  A two-stage classifier for broken and blurred digits in forms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[14]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[16]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[17]  Mary Czerwinski,et al.  Semi-Automatic Image Annotation , 2001, INTERACT.

[18]  Shih-Fu Chang,et al.  Semantic knowledge construction from annotated image collections , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[19]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[20]  P. Poddar,et al.  Hierarchical ensemble of neural networks , 1993, IEEE International Conference on Neural Networks.

[21]  Joshua R. Smith,et al.  Multi-stage classi cation of images from features and related text , 1997 .

[22]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[23]  John R. Smith,et al.  Learning to annotate video databases , 2001, IS&T/SPIE Electronic Imaging.

[24]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  James Ze Wang,et al.  Learning-based linguistic indexing of pictures with 2--d MHMMs , 2002, MULTIMEDIA '02.

[26]  Djamel Bouchaffra,et al.  A Methodology for Mapping Scores to Probabilities , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[28]  Eddy Mayoraz,et al.  Improved Pairwise Coupling Classification with Correcting Classifiers , 1998, ECML.

[29]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[30]  Sargur N. Srihari,et al.  Decision Combination in Multiple Classifier Systems , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Beng Chin Ooi,et al.  Giving meanings to WWW images , 2000, MM 2000.

[32]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[33]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..