Computing Discrepancies Related to Spaces of Smooth Periodic Functions
暂无分享,去创建一个
[1] Stefan Heinrich,et al. Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..
[2] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[3] Karin Frank. Complexity of Local Solution of Multivariate Integral Equations , 1995, J. Complex..
[4] H. Woxniakowski. Information-Based Complexity , 1988 .
[5] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[6] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[7] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[8] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[9] J. N. Lyness,et al. The representation of lattice quadrature rules as multiple sums , 1989 .
[10] Karin Frank,et al. Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..
[11] Spassimir H. Paskov,et al. Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..
[12] B. M. Fulk. MATH , 1992 .
[13] S. Haber. Parameters for integrating periodic functions of several variables , 1983 .
[14] Ian H. Sloan,et al. A computer search of rank-2 lattice rules for multidimensional quadrature , 1990 .
[15] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[16] Henryk Wozniakowski,et al. Information-based complexity , 1987, Nature.
[17] Tony Warnock,et al. Computational investigations of low-discrepancy point-sets. , 1972 .
[18] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .