Computing Discrepancies Related to Spaces of Smooth Periodic Functions

A notion of discrepancy is introduced, which represents the integration error on spaces of r-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical L2-discrepancy as well as r-smooth versions of it introduced recently by Paskov [Pas93]. Based on previous work [FH96], we develop an efficient algorithm for computing periodic discrepancies for quadrature formulas possessing certain tensor product structures, in particular, for Smolyak quadrature rules (also called sparse grid methods). Furthermore, fast algorithms of computing periodic discrepancies for lattice rules can easily be derived from well—known properties of lattices. On this basis we carry out numerical comparisons of discrepancies between Smolyak and lattice rules.

[1]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  Karin Frank Complexity of Local Solution of Multivariate Integral Equations , 1995, J. Complex..

[4]  H. Woxniakowski Information-Based Complexity , 1988 .

[5]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[6]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[7]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[8]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[9]  J. N. Lyness,et al.  The representation of lattice quadrature rules as multiple sums , 1989 .

[10]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[11]  Spassimir H. Paskov,et al.  Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..

[12]  B. M. Fulk MATH , 1992 .

[13]  S. Haber Parameters for integrating periodic functions of several variables , 1983 .

[14]  Ian H. Sloan,et al.  A computer search of rank-2 lattice rules for multidimensional quadrature , 1990 .

[15]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[16]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[17]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[18]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .