High-temperature electrical and thermal transport properties of polycrystalline PdCoO2

The layered delafossite ${\mathrm{PdCoO}}_{2}$ has been predicted to be one of very few materials with a thermopower that is highly anisotropic and switches sign between different crystallographic directions. These properties are of interest for various applications, but have been difficult to verify because sufficiently large crystals have not been available. We report measurements of the high-temperature electrical resistivity, thermal conductivity, and thermopower of phase-pure ${\mathrm{PdCoO}}_{2}$ powder compacts prepared by a highly Pd-efficient synthesis route. While the electronic transport of the polycrystalline samples is dominated by that of the Pd planes, the thermopower exhibits a well-defined deviation from the in-plane character at temperatures above $600\phantom{\rule{4pt}{0ex}}\mathrm{K}$, which is indicative of opposing trends in the Seebeck coefficients within and perpendicular to the delafossite layers. The experimental data are consistently described by a combination of effective-medium models based on the main axes transport quantities. The results support the predicted ambipolar thermopower anisotropy in ${\mathrm{PdCoO}}_{2}$.

[1]  A. Tsukazaki,et al.  Electric dipole effect in PdCoO2/β-Ga2O3 Schottky diodes for high-temperature operation , 2019, Science Advances.

[2]  D. Muller,et al.  In Situ Modification of a Delafossite-Type PdCoO2 Bulk Single Crystal for Reversible Hydrogen Sorption and Fast Hydrogen Evolution , 2019, ACS energy letters.

[3]  R. Pentcheva,et al.  Large thermopower anisotropy in PdCoO2 thin films , 2019, Physical Review Materials.

[4]  A. Fontcuberta i Morral,et al.  Rational strain engineering in delafossite oxides for highly efficient hydrogen evolution catalysis in acidic media , 2019, Nature Catalysis.

[5]  M. König,et al.  Super-geometric electron focusing on the hexagonal Fermi surface of PdCoO2 , 2019, Nature Communications.

[6]  P. Ziółkowski,et al.  Electronic Transport in Alloys with Phase Separation (Composites) , 2019, Open Journal of Composite Materials.

[7]  A. Tsukazaki,et al.  Highly conductive PdCoO2 ultrathin films for transparent electrodes , 2018, 1804.03459.

[8]  D. Hampshire,et al.  How resistive must grain boundaries in polycrystalline superconductors be, to limit Jc? , 2017 .

[9]  Ming Hu,et al.  The role of phonon-phonon and electron-phonon scattering in thermal transport in PdCoO2. , 2017, Physical chemistry chemical physics : PCCP.

[10]  A. Mackenzie The properties of ultrapure delafossite metals , 2016, Reports on progress in physics. Physical Society.

[11]  Y. Ding,et al.  Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study , 2016 .

[12]  R. Pentcheva,et al.  Impact of strain-induced electronic topological transition on the thermoelectric properties of PtCoO 2 and PdCoO 2 , 2015, 1511.09087.

[13]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[14]  A. Maignan,et al.  Large anisotropic thermal conductivity of the intrinsically two-dimensional metallic oxide PdCoO 2 , 2014, 1412.6919.

[15]  R. Melnik,et al.  Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials , 2014, Scientific Reports.

[16]  David J. Singh,et al.  Importance of non-parabolic band effects in the thermoelectric properties of semiconductors , 2013, Scientific Reports.

[17]  C. Dames,et al.  Comparison of Two‐Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites , 2013 .

[18]  S. Birner,et al.  Driving perpendicular heat flow: (p×n)-type transverse thermoelectrics for microscale and cryogenic Peltier cooling. , 2013, Physical review letters.

[19]  Y. Maeno,et al.  Quantum oscillations and high carrier mobility in the delafossite PdCoO(2). , 2012, Physical review letters.

[20]  G. J. Snyder,et al.  Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains , 2010 .

[21]  M. Dresselhaus,et al.  Effects of nanoscale porosity on thermoelectric properties of SiGe , 2010 .

[22]  David J. Singh,et al.  Unusual transport and strongly anisotropic thermopower in PtCoO2 and PdCoO2. , 2010, Physical review letters.

[23]  K. P. Ong,et al.  Origin of anisotropy and metallic behavior in delafossite PdCoO 2 , 2010 .

[24]  Y. Maeno,et al.  Roles of High-Frequency Optical Phonons in the Physical Properties of the Conductive Delafossite PdCoO2 , 2007 .

[25]  S. Cheong,et al.  Intergrain magnetoresistance via second-order tunneling in perovskite manganites , 1999 .

[26]  J. Sass,et al.  Determination of thermal conductivity for deep boreholes , 1995 .

[27]  Susmit Kumar,et al.  Thermal Conductivity of Polycrystalline Materials , 1995 .

[28]  C. Suryanarayana Structure and properties of nanocrystalline materials , 1994 .

[29]  K. Renk,et al.  Thermoelectric Effect in Normal-State YBa2Cu3O7-δ Films , 1994 .

[30]  S. Nagata,et al.  Averaging effect of the anisotropy of the electrical resistivity in a polycrystalline sample , 1993 .

[31]  Reiner Kirchheim,et al.  Hydrogen as a probe for the average thickness of a grain boundary , 1987 .

[32]  V. Halpern The thermopower of binary mixtures , 1983 .

[33]  P. Carcia,et al.  O 2 Electrocatalysis on Thin Film Metallic Oxide Electrodes with the Delafossite Structure , 1980 .

[34]  K. Schulgasser Bounds on the conductivity of statistically isotropic polycrystals , 1977 .

[35]  D. B. Rogers,et al.  Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds , 1971 .

[36]  W. Woodside,et al.  Thermal Conductivity of Porous Media. I. Unconsolidated Sands , 1961 .

[37]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielektrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme , 1936 .