Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells

Inverted polymer solar cells with a bottom metal cathode modified by a conjugated polymer interlayer show considerable improvement of photocurrent and fill factor, which is due to hole blocking at the interlayer, and a modified surface energy which affects the nanostructure in the TQ1/[70]PCBM blend.

[1]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[2]  Milan Vanecek,et al.  Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells , 2002 .

[3]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[4]  Fei Huang,et al.  Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes , 2010 .

[5]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[6]  O. Inganäs,et al.  Lateral Phase Separation Gradients in Spin‐Coated Thin Films of High‐Performance Polymer:Fullerene Photovoltaic Blends , 2011 .

[7]  J. Manca,et al.  Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: Influence on charge-transfer state energy and open-circuit voltage , 2009 .

[8]  Stephan Friedrich,et al.  The Consequences of Interface Mixing on Organic Photovoltaic Device Characteristics , 2010 .

[9]  U. Würfel,et al.  Longterm stability of efficient inverted P3HT:PCBM solar cells , 2009 .

[10]  William R. Salaneck,et al.  Energy‐Level Alignment at Organic/Metal and Organic/Organic Interfaces , 2009 .

[11]  Andreas Gombert,et al.  ITO-free wrap through organic solar cells—A module concept for cost-efficient reel-to-reel production , 2007 .

[12]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[13]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[14]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[15]  Mats Andersson,et al.  Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend—Effects of specific substrate interaction , 2007 .

[16]  O. Inganäs,et al.  An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells , 2010, Advanced materials.

[17]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[18]  L. De Schepper,et al.  Observation of the subgap optical absorption in polymer-fullerene blend solar cells , 2006 .

[19]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[20]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[21]  Seok‐In Na,et al.  Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes , 2008 .

[22]  Jean Manca,et al.  Electroluminescence from charge transfer states in polymer solar cells. , 2009, Journal of the American Chemical Society.

[23]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[24]  T. Nyberg An alternative method to build organic photodiodes , 2004 .

[25]  J. Park,et al.  Enhanced Performance in Polymer Solar Cells by Surface Energy Control , 2010 .

[26]  Yong Cao,et al.  Enhanced open-circuit voltage in polymer solar cells , 2009 .

[27]  Mikkel Jørgensen,et al.  ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules , 2011 .