Zeta and Fredholm determinants of self-adjoint operators

Let L be a self-adjoint invertible operator in a Hilbert space such that L is p-summable. Under a certain discrete dimension spectrum assumption on L, we study the relation between the (regularized) Fredholm determinant, detp(I+z·L ), on the one hand and the zeta regularized determinant, detζ(L+z), on the other. One of the main results is the formula detζ(L + z) detζ(L) = exp ( p−1 ∑ j=1 z j! · d dzj log detζ(L + z)|z=0 ) · detp(I + z · L −1 ). We show that the derivatives d j dzj log detζ(L+ z)|z=0 can be expressed in terms of (regularized) zeta values and heat trace coefficients of L. Furthermore, we give a general criterion in terms of the heat trace coefficients (and which is, e.g., fulfilled for large classes of elliptic operators) which guarantees that the constant term in the asymptotic expansion of the Fredholm determinant, log detp(I+z·L ), equals the zeta determinant of L.

[1]  J. Brüning,et al.  On the spectral geometry of algebraic curves. , 1996 .

[2]  W. D. Suijlekom The Local Index Formula in Noncommutative Geometry , 2015 .

[3]  M. Lesch,et al.  Regular singular Sturm-Liouville operators and their zeta-determinants , 2010, 1005.0368.

[4]  L. Friedlander The asymptotics of the determinant function for a class of operators , 1989 .

[5]  I. Singer,et al.  R-Torsion and the Laplacian on Riemannian manifolds , 1971 .

[6]  M. Lesch A gluing formula for the analytic torsion on singular spaces , 2012, 1203.2793.

[7]  Determinants of Regular Singular Sturm ‐ Liouville Operators , 1999, math/9902114.

[8]  Zeta-determinants of Sturm–Liouville operators with quadratic potentials at infinity , 2016, 1607.07240.

[9]  M. Spreafico Zeta invariants for sequences of spectral type, special functions and the Lerch formula , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  Katrin Baumgartner,et al.  Introduction To Complex Analysis In Several Variables , 2016 .

[11]  L. Hörmander,et al.  An introduction to complex analysis in several variables , 1973 .

[12]  G. N. Watson,et al.  The Harmonic Functions Associated with the Parabolic Cylinder , 2022 .

[13]  M. Lesch,et al.  Regularizing infinite sums of zeta-determinants , 2013, 1306.0780.

[14]  T. Kappeler,et al.  Meyer-Vietoris type formula for determinants of elliptic differential operators , 1992 .

[16]  F. Gesztesy,et al.  On traces and modified Fredholm determinants for half-line Schrödinger operators with purely discrete spectra , 2018, Quarterly of Applied Mathematics.

[17]  Barry Simon,et al.  Notes on infinite determinants of Hilbert space operators , 1977 .

[18]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[19]  K. Wojciechowski The ζ-Determinant and the Additivity of the η-Invariant on the Smooth, Self-Adjoint Grassmannian , 1999 .

[20]  Operators of Fuchs type, conical singularities, and asymptotic methods , 1996, dg-ga/9607005.