Comparison of model electron densities and temperatures with Millstone Hill observations during undisturbed periods and the geomagnetic storms of 16–23 March and 6–12 April 1990

[1]  A. Pavlov Mechanisms of the electron density depletion in the SAR arc region , 1996 .

[2]  P. Richards,et al.  Ionospheric electron densities calculated using different EUV flux models and cross sections: Comparison with radar data , 1995 .

[3]  P. Kishcha Appendix D — Indices and updating procedures for modelling of ionospheric disturbances , 1995 .

[4]  A. Aruliah,et al.  An optimised method for calculating the O , 1995 .

[5]  P. Richards,et al.  Ionospheric effects of the March 1990 magnetic storm : comparison of theory and measurement , 1994 .

[6]  C. Hines,et al.  Accuracy of O+−O collision cross-section deduced from ionosphere-thermosphere observations , 1994 .

[7]  W. Tobiska Modeled soft X-ray solar irradiances , 1994 .

[8]  M. Mendillo,et al.  Coordinated stable auroral red arc observations: Relationship to plasma convection , 1994 .

[9]  A. Pavlov The role of vibrationally excited nitrogen in the formation of the mid-latitude negative ionospheric storms , 1994 .

[10]  P. Richards,et al.  EUVAC: A solar EUV Flux Model for aeronomic calculations , 1994 .

[11]  W. Kent Toriska Modeled soft X-ray solar irradiances , 1994 .

[12]  P. Richards,et al.  Reevaluation of the O+(²P) reaction rate coefficients derived from Atmosphere Explorer C observations , 1993 .

[13]  J. Salah Interim standard for the ion‐neutral atomic oxygen collision frequency , 1993 .

[14]  W. Pesnell,et al.  Momentum transfer collision frequency of O+‐O , 1993 .

[15]  A. Pavlov The role of vibrationally excited nitrogen in the formation of the mid-latitude ionisation trough , 1993 .

[16]  M. Buonsanto,et al.  Neutral atomic oxygen density from nighttime radar and optical wind measurements at Millstone Hill , 1992 .

[17]  J. Foster,et al.  Observations from Millstone Hill during the geomagnetic disturbances of March and April 1990 , 1992 .

[18]  S. Quegan,et al.  The role of ion drift in the formation of ionisation troughs in the mid- and high-latitude ionosphere—a review , 1992 .

[19]  M. A. Biondi,et al.  Combined optical and radar wind measurements in the F region over Millstone Hill , 1991 .

[20]  P. Richards An improved algorithm for determining neutral winds from the height of the F2 peak electron density , 1991 .

[21]  Paul G. Richards,et al.  Mid‐ and low‐latitude model of thermospheric emissions: 1. O+ (²P) 7320 Å and N2 (2P) 3371 Å , 1990 .

[22]  R. Moffett,et al.  The influence of O+−O collision frequency on ionospheric F-region behaviour , 1990 .

[23]  D. Bilitza Progress report on IRI status , 1990 .

[24]  A. Pavlov The role of vibrationally excited nitrogen in the ionosphere , 1988 .

[25]  V. Wickwar,et al.  The O-O Collision Cross-Section: Can It Be Inferred from Aeronomical Measurements? , 1987 .

[26]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[27]  P. Richards,et al.  A factor of 2 reduction in theoretical F2 peak electron density due to enhanced vibrational excitation of N2 in summer at solar maximum , 1986 .

[28]  A. Kashirin Photoionization in the night-time ionosphere. , 1986 .

[29]  M. Buonsanto Seasonal variations of day-time ionisation flows inferred from a comparison of calculated and observed NmF2 , 1986 .

[30]  Paul G. Richards,et al.  Meridional winds in the thermosphere derived from measurement of F 2 layer height , 1986 .

[31]  P. Richards,et al.  Effects of vibrational enhancement of N2 on the cooling rate of ionospheric thermal electrons , 1986 .

[32]  J. Fox,et al.  The vibrational distribution of N2 + in the terrestrial ionosphere , 1985 .

[33]  P. Richards,et al.  Results of a comprehensive study of the photochemistry of N2 + in the ionosphere , 1984 .

[34]  A. V. Tashchilin,et al.  Ionosphere and plasmasphere , 1984 .

[35]  P. Richards,et al.  The effect on thermospheric chemistry of a resonant charge exchange reaction involving vibrationally excited N2+ ions with atomic oxygen , 1982 .

[36]  Marsha R. Torr,et al.  The role of metastable species in the thermosphere , 1982 .

[37]  R. Johnsen,et al.  Laboratory measurements of the O+(²D) + N2 and O+(²D) + O2 reaction rate coefficients and their ionospheric implications , 1980 .

[38]  R. Johnsen,et al.  Measurements of the O++N2 and O++O2 reaction rates from 300 to 900 K , 1978 .

[39]  J. St.‐Maurice,et al.  Erratum: Nonthermal rate coefficients in the ionosphere: the reactions of O+ with N2, O2, and NO , 1978 .

[40]  J. Hoffman,et al.  Ion photochemistry of the thermosphere from Atmosphere Explorer C measurements , 1977 .

[41]  E. A. Mason,et al.  Statistical–mechanical theory of gaseous ion–molecule reactions in an electrostatic field , 1977 .

[42]  D. Albritton,et al.  Effects of ion speed distributions in flow‐drift tube studies of ion–neutral reactions , 1977 .

[43]  R. Schunk,et al.  Ionospheric composition in SAR-arcs , 1976 .

[44]  R. Schunk,et al.  Effect of electric fields on the daytime high-latitude E and F regions , 1975 .

[45]  P. Meijer,et al.  Vibrationally excited nitrogen in stable auroral red arcs and its effect on ionospheric recombination , 1974 .

[46]  T. V. Zandt,et al.  Rate coefficient for the reaction of O+ with vibrationally excited N2 , 1973 .

[47]  R. Johnsen,et al.  Measurements of the O+ + N2 and O+ + O2 reaction rates from 300°K to 2 eV , 1973 .

[48]  M. Vlasov Vibrationally-Excited Nitrogen in the Upper Atmosphere , 1972 .

[49]  F. Fehsenfeld,et al.  Afterglow Studies of the Reactions He+, He(23S), and O+ with Vibrationally Excited N2 , 1968 .

[50]  P. Banks Collision frequencies and energy transfer electrons , 1966 .

[51]  D. Osterbrock,et al.  Relative [o II] Intensities in Gaseous Nebulae. , 1957 .