Intraamniotic Administration (Gallus gallus) of Genistein Alters Mineral Transport, Intestinal Morphology, and Gut Microbiota

Genistein is an isoflavone naturally present in numerous staple food crops, such as soybeans and chickpeas. This study utilized the Gallus gallus intraamniotic administration procedure to assess genistein administration effects on trace mineral status, brush border membrane (BBM) functionality, intestinal morphology, and intestinal microbiome in vivo. Eggs were divided into five groups with 1 mL injection of the following treatments: no-injection, DI H2O, 5% inulin, and 1.25% and 2.5% genistein (n = 8 per group). Upon hatch, blood, cecum, small intestine, and liver were collected for assessment of hemoglobin, intestinal microflora alterations, intestinal morphometric assessment, and mRNA gene expression of relevant iron and zinc transporter proteins, respectively. This study demonstrated that intraamniotic administration of 2.5% genistein increased villus surface area, number of acidic goblet cells, and hemoglobin. Additionally, genistein exposure downregulated duodenal cytochrome B (DcytB) and upregulated hepcidin expression. Further, genistein exposure positively altered the composition and function of the intestinal microbiota. Our results suggest a physiological role for genistein administration in improving mineral status, favorably altering BBM functionality and development, positively modulating the intestinal microbiome, as well as improving physiological status.

[1]  N. Larsson,et al.  The effect of Lactiplantibacillus plantarum 299v together with a low dose of iron on iron status in healthy pregnant women: A randomized clinical trial , 2021, Acta obstetricia et gynecologica Scandinavica.

[2]  V. Nikolenko,et al.  Paneth cells: Maintaining dynamic microbiome‐host homeostasis, protecting against inflammation and cancer , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  Nikolai Kolba,et al.  Yacon (Smallanthus sonchifolius) flour soluble extract improve intestinal bacterial populations, brush border membrane functionality and morphology in vivo (Gallus gallus). , 2020, Food research international.

[4]  O. Koren,et al.  Alterations in the Intestinal Morphology, Gut Microbiota, and Trace Mineral Status Following Intra-Amniotic Administration (Gallus gallus) of Teff (Eragrostis tef) Seed Extracts , 2020, Nutrients.

[5]  T. Warkentin,et al.  Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane Functionality In Vivo (Gallus gallus) , 2020, Nutrients.

[6]  D. Šefer,et al.  Performance, intestinal histomorphology and bone composition of broiler chickens fed diets supplemented with genistein , 2020 .

[7]  Gretchen J. Mahler,et al.  TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. , 2020, Small.

[8]  H. Haase,et al.  A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models , 2020, Nutrients.

[9]  G. Gamba,et al.  Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects , 2020, BMJ Open Diabetes Research & Care.

[10]  Gretchen J. Mahler,et al.  Intra-amniotic administration (Gallus gallus) of TiO2, SiO2, and ZnO nanoparticles affect brush border membrane functionality and alters gut microflora populations. , 2020, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[11]  Nikolai Kolba,et al.  Soluble Extracts from Chia Seed (Salvia hispanica L.) Affect Brush Border Membrane Functionality, Morphology and Intestinal Bacterial Populations In Vivo (Gallus gallus) , 2019, Nutrients.

[12]  Desirrê Morais Dias,et al.  Soluble extracts from carioca beans (Phaseolus vulgaris L.) affect the gut microbiota and iron related brush border membrane protein expression in vivo (Gallus gallus). , 2019, Food research international.

[13]  Ming Li,et al.  Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. , 2019, Food & function.

[14]  Nikolai Kolba,et al.  Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. , 2019, Food & function.

[15]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[16]  K. Garey,et al.  Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways , 2019, mBio.

[17]  C. Kitts,et al.  A comparison of methods for enumerating bacteria in direct fed microbials for animal feed. , 2019, Journal of microbiological methods.

[18]  T. Takatani-Nakase,et al.  Zinc Transporters and the Progression of Breast Cancers. , 2018, Biological & pharmaceutical bulletin.

[19]  Desirrê Morais Dias,et al.  Advantages and limitations of in vitro and in vivo methods of iron and zinc bioavailability evaluation in the assessment of biofortification program effectiveness , 2018, Critical reviews in food science and nutrition.

[20]  L. Velázquez-Villegas,et al.  Long‐Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metabolism, Metabolic Endotoxemia, and Cognitive Function in Mice Fed a High‐Fat Diet , 2018, Molecular nutrition & food research.

[21]  T. Guo,et al.  Exacerbation of Type 1 Diabetes in Perinatally Genistein Exposed Female Non-Obese Diabetic (NOD) Mouse Is Associated With Alterations of Gut Microbiota and Immune Homeostasis , 2018, Toxicological sciences : an official journal of the Society of Toxicology.

[22]  E. Tako,et al.  The In Ovo Feeding Administration (Gallus Gallus)—An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits , 2018, Nutrients.

[23]  Takafumi Hara,et al.  Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo , 2017, International journal of molecular sciences.

[24]  Daniel E. Lefever,et al.  Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non‐obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis , 2017, Toxicology and applied pharmacology.

[25]  O. Koren,et al.  Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus Vulgaris L.) bean-based diet , 2017, PloS one.

[26]  J. Bogucka,et al.  The impact of synbiotic administration through in ovo technology on the microstructure of a broiler chicken small intestine tissue on the 1st and 42nd day of rearing , 2017, Journal of Animal Science and Biotechnology.

[27]  Hao Wang,et al.  Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress , 2017, Nutrients.

[28]  S. Delgado,et al.  Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones , 2017, BMC Microbiology.

[29]  Nikolai Kolba,et al.  Intra Amniotic Administration of Raffinose and Stachyose Affects the Intestinal Brush Border Functionality and Alters Gut Microflora Populations , 2017, Nutrients.

[30]  M. Taranto,et al.  Cobalamin production by Lactobacillus coryniformis: biochemical identification of the synthetized corrinoid and genomic analysis of the biosynthetic cluster , 2016, BMC Microbiology.

[31]  M. Wessling-Resnick,et al.  Dietary supplementation with ipriflavone decreases hepatic iron stores in wild type mice. , 2016, Blood cells, molecules & diseases.

[32]  D. van Sinderen,et al.  Bifidobacteria and Their Role as Members of the Human Gut Microbiota , 2016, Front. Microbiol..

[33]  Solomon Habtemariam,et al.  Genistein and cancer: current status, challenges, and future directions. , 2015, Advances in nutrition.

[34]  D. Richardson,et al.  Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation , 2015, Nutrients.

[35]  E. Picardi,et al.  Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus , 2014, PloS one.

[36]  A. A. Kamboh,et al.  Individual and combined effects of genistein and hesperidin on immunity and intestinal morphometry in lipopolysacharide-challenged broiler chickens. , 2014, Poultry science.

[37]  J. Collins,et al.  Mechanistic and regulatory aspects of intestinal iron absorption. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[38]  J. Stangoulis,et al.  The effect of wheat prebiotics on the gut bacterial population and iron status of iron deficient broiler chickens , 2014, Nutrition Journal.

[39]  J. Curiel,et al.  Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds , 2014 .

[40]  J. Brenna,et al.  Dietary Zinc Deficiency Affects Blood Linoleic Acid: Dihomo-γ-linolenic Acid (LA:DGLA) Ratio; a Sensitive Physiological Marker of Zinc Status in Vivo (Gallus gallus) , 2014, Nutrients.

[41]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[42]  E. Fraenkel,et al.  The small molecule, genistein, increases hepcidin expression in human hepatocytes , 2013, Hepatology.

[43]  C. Vulpe,et al.  Intestinal iron absorption. , 2012, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[44]  Mandy B. Esch,et al.  Oral exposure to polystyrene nanoparticles affects iron absorption. , 2012, Nature nanotechnology.

[45]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[46]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[47]  Y. S. Kim,et al.  Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress , 2010, Current gastroenterology reports.

[48]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[49]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[50]  M. Colasanti,et al.  Genistein up-regulates the iron efflux system in glial cells , 2010, Neuroscience Letters.

[51]  V. López,et al.  Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. , 2010, Experimental cell research.

[52]  Rob Knight,et al.  PyNAST: a flexible tool for aligning sequences to a template alignment , 2009, Bioinform..

[53]  B. Sánchez,et al.  Identification of Novel Proteins Secreted by Lactobacillus plantarum That Bind to Mucin and Fibronectin , 2009, Journal of Molecular Microbiology and Biotechnology.

[54]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[55]  A. Braune,et al.  Isolation of a Human Intestinal Bacterium Capable of Daidzein and Genistein Conversion , 2009, Applied and Environmental Microbiology.

[56]  D. Korver,et al.  Factors Affecting Intestinal Health in Poultry , 2008, Poultry Science.

[57]  B. Liu,et al.  Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters. , 2008, Poultry science.

[58]  Abelardo Margolles,et al.  Low-pH Adaptation and the Acid Tolerance Response of Bifidobacterium longum Biotype longum , 2007, Applied and Environmental Microbiology.

[59]  Richard F Hurrell,et al.  Nutritional iron deficiency , 2007, The Lancet.

[60]  M. Garrick,et al.  Iron Imports. II. Iron uptake at the apical membrane in the intestine. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[61]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[62]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[63]  E. Morgan,et al.  Mechanisms and regulation of intestinal iron absorption. , 2002, Blood cells, molecules & diseases.

[64]  R. Joerger,et al.  16S rRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens , 2002, Applied and Environmental Microbiology.

[65]  K. Setchell,et al.  Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. , 1998, The American journal of clinical nutrition.

[66]  E. Decuypere,et al.  Incubation temperature as a management tool: a review , 1992 .

[67]  E. Tako,et al.  Alterations in gut microflora populations and brush border functionality following intra-amniotic daidzein administration , 2015 .

[68]  E. Tako,et al.  Iron Status of the Late Term Broiler (Gallus gallus) Embryo and Hatchling , 2011 .

[69]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[70]  D. Brown,et al.  Muscle glycogen: Comparison of iodine binding and enzyme digestion assays and application to meat samples. , 1987, Meat science.