Secondary compounds can reduce the soil micro-arthropod effect on lichen decomposition

[1]  D. Wardle,et al.  The impact of secondary compounds and functional characteristics on lichen palatability and decomposition , 2013 .

[2]  D. Wardle,et al.  Microclimate within litter bags of different mesh size: Implications for the 'arthropod effect' on litter decomposition , 2013 .

[3]  K. Solhaug,et al.  Optimal defense: snails avoid reproductive parts of the lichen Lobaria scrobiculata due to internal defense allocation. , 2010, Ecology.

[4]  A. Fredeen,et al.  Decomposition and nutrient release from four epiphytic lichen litters in sub-boreal spruce forests , 2010 .

[5]  S. Hättenschwiler,et al.  Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. , 2010, Ecology.

[6]  L. Nybakken,et al.  Lichen Compounds Restrain Lichen Feeding by Bank Voles (Myodes glareolus) , 2010, Journal of Chemical Ecology.

[7]  J. Cornelissen,et al.  An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species , 2009 .

[8]  J. Lawrey Chemical Defense in Lichen Symbioses , 2009 .

[9]  Sandra Díaz,et al.  Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. , 2008, Ecology letters.

[10]  Y. Gauslaa,et al.  Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests , 2008, Oecologia.

[11]  L. Nybakken,et al.  Forest Successional Stage Affects the Cortical Secondary Chemistry of Three Old Forest Lichens , 2007, Journal of Chemical Ecology.

[12]  B. Nihlgård,et al.  Lichen litter decomposition in Nothofagus forest of northern Patagonia: biomass and chemical changes over time , 2007 .

[13]  K. Nakane,et al.  Contribution of microarthropods to the decomposition of needle litter in a Japanese cedar (Cryptomeria japonica D. Don) plantation , 2006 .

[14]  M. Hyvärinen,et al.  REMOVAL OF LICHEN SECONDARY METABOLITES AFFECTS FOOD CHOICE AND SURVIVAL OF LICHENIVOROUS MOTH LARVAE , 2005 .

[15]  R. Brandl,et al.  Do invertebrate decomposers affect the disappearance rate of litter mixtures , 2005 .

[16]  Y. Gauslaa Lichen palatability depends on investments in herbivore defence , 2005, Oecologia.

[17]  Terry V. Callaghan,et al.  Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types , 2004 .

[18]  K. Solhaug,et al.  Parietin, a photoprotective secondary product of the lichen Xanthoria parietina , 1996, Oecologia.

[19]  R. Honegger The Impact of Different Long‐Term Storage Conditions on the Viability of Lichen‐Forming Ascomycetes and their Green Algal Photobiont, Trebouxia spp. , 2003 .

[20]  Mark A. Bradford,et al.  Microbiota, fauna, and mesh size interactions in litter decomposition , 2002 .

[21]  David A. Wardle,et al.  Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores , 2002 .

[22]  D. Coxson,et al.  Decomposition of hair lichens (Alectoria Sarmentosa and Bryoria spp.) Under Snowpack in Montane Forest, Cariboo Mountains, British Columbia , 2002, The Lichenologist.

[23]  K. Solhaug,et al.  Acetone Rinsing - A Method for Testing Ecological and Physiological Roles of Secondary Compounds in Living Lichens , 2001 .

[24]  P. Vitousek,et al.  The role of polyphenols in terrestrial ecosystem nutrient cycling. , 2000, Trends in ecology & evolution.

[25]  S. Huneck The Significance of Lichens and Their Metabolites , 1999, Naturwissenschaften.

[26]  W. Schlesinger,et al.  The Influence of Epiphytic Lichens on the Nutrient Cycling of an Oak Woodland , 1996 .

[27]  M. Carreiro,et al.  Effects of Damage to Living Plants on Leaf Litter Quality , 1996 .

[28]  Randy A. Dahlgren,et al.  Polyphenol control of nitrogen release from pine litter , 1995, Nature.

[29]  W. Schlesinger,et al.  Mineral Cycling and Epiphytic Lichens: Implications at the Ecosystem Level , 1991, The Lichenologist.

[30]  N. Porter,et al.  Lichen-forming fungi: potential sources of novel metabolites. , 1991, Trends in biotechnology.

[31]  A. Kuiters Role of phenolic substances from decomposing forest litter in plant–soil interactions , 1990 .

[32]  J. Lawrey Biological Role of Lichen Substances , 1986 .

[33]  T. Seastedt The Role of Microarthropods in Decomposition and Mineralization Processes , 1984 .

[34]  H. Petersen,et al.  A comparative analysis of soil fauna populations and their role in decomposition processes , 1982 .

[35]  P. Ineson,et al.  Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter , 1982 .

[36]  T. Seastedt,et al.  Effects of microarthropods on the seasonal dynamics of nutrients in forest litter , 1980 .

[37]  J. Anderson,et al.  Decomposition in Terrestrial Ecosystems , 1979 .

[38]  D. Levin The Chemical Defenses of Plants to Pathogens and Herbivores , 1976 .

[39]  L. Blakemore Methods for chemical analysis of soils , 1972 .