Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices

Abstract This comprehensive review focuses on recent advances in energy harvesting of micro-scale and nano-scale generators based on piezoelectric and triboelectric effects. The development of flexible and hybrid devices for a variety of energy harvesting applications are systematically reviewed. A fundamental understanding of the important parameters that determine the performance of piezoelectric, triboelectric and hybrid devices are summarized. Current research directions being explored and the emerging factors to improve harvester functionality and advance progress in achieving high performance and durable energy conversion are provided. Investigations with regard to integrating flexible matrices and optimizing the composition of the piezoelectric and triboelectric materials are examined to enhance device performance and improve cost-effectiveness for the commercial arena. Finally, future research trends, emerging device structures and novel materials in view of imminent developments and harvesting applications are presented.

[1]  Zhong Lin Wang,et al.  Carrier density and Schottky barrier on the performance of DC nanogenerator. , 2008, Nano letters.

[2]  Zhong Lin Wang,et al.  Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications. , 2017, ACS nano.

[3]  Amit Kumar,et al.  Sponge-Templated Macroporous Graphene Network for Piezoelectric ZnO Nanogenerator. , 2015, ACS applied materials & interfaces.

[4]  Tao Jiang,et al.  Smart Floor with Integrated Triboelectric Nanogenerator As Energy Harvester and Motion Sensor. , 2017, ACS applied materials & interfaces.

[5]  R. Whatmore,et al.  Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application , 2000 .

[6]  Zhong Lin Wang,et al.  Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors , 2015 .

[7]  Henry A. Sodano,et al.  A Low‐Frequency Energy Harvester from Ultralong, Vertically Aligned BaTiO3 Nanowire Arrays , 2014 .

[8]  S. Lee,et al.  Toward Arbitrary‐Direction Energy Harvesting through Flexible Piezoelectric Nanogenerators Using Perovskite PbTiO3 Nanotube Arrays , 2017, Advanced materials.

[9]  Kewei Zhang,et al.  A One‐Structure‐Based Piezo‐Tribo‐Pyro‐Photoelectric Effects Coupled Nanogenerator for Simultaneously Scavenging Mechanical, Thermal, and Solar Energies , 2017 .

[10]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[11]  Shengming Li,et al.  A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable Electronics. , 2015, Advanced materials.

[12]  Hwan-Sik Yoon,et al.  Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications , 2005 .

[13]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[14]  Swagata Roy,et al.  Er3+/Fe3+ Stimulated Electroactive, Visible Light Emitting, and High Dielectric Flexible PVDF Film Based Piezoelectric Nanogenerators: A Simple and Superior Self-Powered Energy Harvester with Remarkable Power Density. , 2017, ACS applied materials & interfaces.

[15]  M. Willander,et al.  An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing , 2017 .

[16]  Y. Hao,et al.  Single‐InN‐Nanowire Nanogenerator with Upto 1 V Output Voltage , 2010, Advanced materials.

[17]  Sheng Long Gaw,et al.  Wearable All‐Fabric‐Based Triboelectric Generator for Water Energy Harvesting , 2017 .

[18]  J. Hutchison,et al.  Selective growth of vertical ZnO nanowire arrays using chemically anchored gold nanoparticles. , 2008, ACS nano.

[19]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[20]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[21]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[22]  Joseph A. Paradiso,et al.  Parasitic power harvesting in shoes , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[23]  Ren Zhu,et al.  Environmental effects on nanogenerators , 2015 .

[24]  Zhong Lin Wang,et al.  An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance , 2013 .

[25]  Usman Khan,et al.  Triboelectric Nanogenerators for Blue Energy Harvesting. , 2016, ACS nano.

[26]  Ankanahalli Shankaregowda Smitha,et al.  Roll‐to‐Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator , 2015, Advanced materials.

[27]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[28]  Zhiyuan Gao,et al.  Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators , 2009 .

[29]  Guang Zhu,et al.  Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. , 2014, Nano letters.

[30]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[31]  Haixiong Tang,et al.  Nanocomposites with increased energy density through high aspect ratio PZT nanowires , 2011, Nanotechnology.

[32]  Hwan-Sik Yoon,et al.  Optimization of Electrical Output in Response to Mechanical Input in Piezoceramic Laminated Shells , 2003 .

[33]  Chengyi Hou,et al.  A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications , 2013, Scientific Reports.

[34]  Daewoong Jung,et al.  Highly reliable wind-rolling triboelectric nanogenerator operating in a wide wind speed range , 2016, Scientific Reports.

[35]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[36]  H. Fan,et al.  Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. , 2016, ACS applied materials & interfaces.

[37]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[38]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[39]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[40]  Shengming Li,et al.  An inductor-free auto-power-management design built-in triboelectric nanogenerators , 2017 .

[41]  Maksim Skorobogatiy,et al.  Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications. , 2017, ACS nano.

[42]  Nai‐Jen Ku,et al.  Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration , 2014 .

[43]  Joo-Yun Jung,et al.  Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. , 2015, ACS nano.

[44]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[45]  Richard B. Cass,et al.  Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites , 2002 .

[46]  Long Lin,et al.  Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. , 2016, ACS nano.

[47]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[48]  Zhong Lin Wang,et al.  Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs , 2013 .

[49]  Zhong Lin Wang,et al.  Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. , 2013, Nano letters.

[50]  M. AniMelfaRoji,et al.  A retrospect on the role of piezoelectric nanogenerators in the development of the green world , 2017 .

[51]  Long Lin,et al.  Stretchable‐Rubber‐Based Triboelectric Nanogenerator and Its Application as Self‐Powered Body Motion Sensors , 2015 .

[52]  Sang-Jae Kim,et al.  Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting , 2013 .

[53]  Paul M. Weaver,et al.  Nanostructured p‐n Junctions for Kinetic‐to‐Electrical Energy Conversion , 2012 .

[54]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[55]  C. Chan,et al.  Electrical failure of multilayer ceramic capacitors subjected to environmental screening testing , 1996 .

[56]  Zhong Lin Wang,et al.  Lead-free nanogenerator made from single ZnSnO3 microbelt. , 2012, ACS nano.

[57]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[58]  Zhong Lin Wang,et al.  Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. , 2013, Nano letters.

[59]  Ryutaro Maeda,et al.  Novel multibridge-structured piezoelectric microdevice for scanning force microscopy , 2000 .

[60]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[61]  G. Cao,et al.  A Self‐Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithium‐Ion Battery for Wearable Electronics , 2015, Advanced materials.

[62]  Zhong Lin Wang,et al.  Nanogenerator based on zinc blende CdTe micro/nanowires , 2013 .

[63]  S. Baek,et al.  A flexible and transparent graphene/ZnO nanorod hybrid structure fabricated by exfoliating a graphite substrate. , 2014, Nanoscale.

[64]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[65]  Dae Yun Kim,et al.  Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia , 2016 .

[66]  Zhong Lin Wang,et al.  Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. , 2016, ACS nano.

[67]  Markus Mohr,et al.  Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting , 2014, Nano Research.

[68]  Zhong-Lin Wang,et al.  Alternating the Output of a CdS Nanowire Nanogenerator by a White‐Light‐Stimulated Optoelectronic Effect , 2008 .

[69]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[70]  Yong Ding,et al.  Piezoelectric nanogenerator using CdS nanowires , 2008 .

[71]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[72]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[73]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[74]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[75]  The performance of nanogenerators fabricated on rigid and flexible substrates , 2013 .

[76]  Radha Shankararajan,et al.  Experimental Study on Flexible ZnO Based Nanogenerator Using Schottky Contact for Energy Harvesting Applications , 2017, IEEE Transactions on Nanotechnology.

[77]  Zhong Lin Wang,et al.  High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array , 2013, Nature Photonics.

[78]  Zhong Lin Wang,et al.  A One‐Structure‐Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric–Piezoelectric–Pyroelectric Effects , 2016, Advanced materials.

[79]  Shujun Zhang,et al.  Piezoelectric Materials for High Temperature Sensors , 2011 .

[80]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[81]  Henry A. Sodano,et al.  Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays , 2009 .

[82]  Jun-Han Huang,et al.  Energy Harvesting from the Obliquely Aligned InN Nanowire Array with a Surface Electron‐Accumulation Layer , 2013, Advanced materials.

[83]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[84]  Zhong Lin Wang,et al.  Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems , 2012 .

[85]  Zhong Lin Wang On Maxwell's displacement current for energy and sensors: the origin of nanogenerators , 2017 .

[86]  Gavin Collins,et al.  Estimation of 3D Ground Reaction Force Using Nanocomposite Piezo-Responsive Foam Sensors During Walking , 2017, Annals of Biomedical Engineering.

[87]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[88]  Jonathan Swingler,et al.  The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc bias , 2009 .

[89]  Ruomeng Yu,et al.  Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. , 2014, ACS applied materials & interfaces.

[90]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[91]  Haixia Zhang,et al.  Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator , 2017, Microsystems & Nanoengineering.

[92]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[93]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[94]  R. Yassar,et al.  Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts , 2014 .

[95]  Zhong Lin Wang,et al.  Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. , 2013, ACS nano.

[96]  Jinhui Song,et al.  Piezoelectric potential output from ZnO nanowire functionalized with p-type oligomer. , 2008, Nano letters.

[97]  Nuanyang Cui,et al.  Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. , 2012, Nano letters.

[98]  Sung Han,et al.  Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylenedioxythiophene) electrodes , 2005 .

[99]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[100]  Lu Zhang,et al.  Two dimensional woven nanogenerator , 2013 .

[101]  N. Lee,et al.  Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. , 2016, ACS applied materials & interfaces.

[102]  Chen Xu,et al.  Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. , 2009, Journal of the American Chemical Society.

[103]  Chuan Wang,et al.  Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics , 2017, Nature Communications.

[104]  Shengnan Lu,et al.  Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating , 2015, Scientific Reports.

[105]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[106]  Dragan Damjanovic Hysteresis in Piezoelectric and Ferroelectric Materials , 2006 .

[107]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[108]  H. S. Panda,et al.  Fabrication of Large Aspect Ratio Ba0.85Ca0.15Zr0.1Ti0.9O3 Superfine Fibers Based Flexible Nanogenerator Device: Synergistic Effect on Curie Temperature, Harvested Voltage and Power , 2017 .

[109]  N. Gogneau,et al.  Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact. , 2017, Nanoscale.

[110]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[111]  H. Chan,et al.  Piezo‐Phototronic Effect‐Induced Dual‐Mode Light and Ultrasound Emissions from ZnS:Mn/PMN–PT Thin‐Film Structures , 2012, Advanced materials.

[112]  Sang‐Jae Kim,et al.  Growth of 2D ZnO Nanowall for Energy Harvesting Application , 2014 .

[113]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[114]  Minbaek Lee,et al.  Self-powered environmental sensor system driven by nanogenerators , 2011 .

[115]  Zhong Lin Wang,et al.  Radial-arrayed rotary electrification for high performance triboelectric generator , 2014, Nature Communications.

[116]  P. Wynblatt,et al.  Water Adsorption and Surface Conductivity Measurements on alpha -Alumina Substrates , 1987 .

[117]  Tae Yun Kim,et al.  Nanopatterned textile-based wearable triboelectric nanogenerator. , 2015, ACS nano.

[118]  Gwiy-Sang Chung,et al.  Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites , 2013 .

[119]  Hyun-Jin Kim,et al.  Enhancement of piezoelectricity via electrostatic effects on a textile platform , 2012 .

[120]  Zhong-Lin Wang,et al.  Hourglass Triboelectric Nanogenerator as a “Direct Current” Power Source , 2017 .

[121]  Ping Zhao,et al.  Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO3/Polydimethylsiloxane Composite Film. , 2016, ACS applied materials & interfaces.

[122]  Ju-Hyuck Lee,et al.  Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation , 2013, Scientific Reports.

[123]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[124]  Steve Dunn,et al.  A Self‐Powered ZnO‐Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response , 2013, Advanced materials.

[125]  D. D. de Leeuw,et al.  Flexible Piezoelectric Touch Sensor by Alignment of Lead‐Free Alkaline Niobate Microcubes in PDMS , 2017 .

[126]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[127]  S. Senz,et al.  Energy Harvesting Using Nanowires? , 2008 .

[128]  Long Lin,et al.  A Flexible, Stretchable and Shape‐Adaptive Approach for Versatile Energy Conversion and Self‐Powered Biomedical Monitoring , 2015, Advanced materials.

[129]  Mengdi Han,et al.  High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies , 2015 .

[130]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[131]  Zhong Lin Wang,et al.  Functional electrical stimulation by nanogenerator with 58 V output voltage. , 2012, Nano letters.

[133]  Yan Zhang,et al.  A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts , 2013 .

[134]  S. Morrison,et al.  Semiconductor gas sensors , 1985 .

[135]  T. C. Mcgill,et al.  Piezoelectric fields in nitride devices , 1999 .

[136]  Bahri Rezig,et al.  Metrological characteristics of ZNO oxygen sensor at room temperature , 2004 .

[137]  Chen Xu,et al.  Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy , 2011, Advanced materials.

[138]  Sang-Woo Kim,et al.  Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics. , 2015, ChemSusChem.

[139]  Zhong Lin Wang,et al.  Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. , 2013, ACS nano.

[140]  Long Lin,et al.  Multi-layered disk triboelectric nanogenerator for harvesting hydropower , 2014 .

[141]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[142]  J. Wu,et al.  Self-powered pendulum and micro-force active sensors based on a ZnS nanogenerator , 2014 .

[143]  Zhong Lin Wang,et al.  High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. , 2010, Nano letters.

[144]  Neha Singh,et al.  Development and optical study of hexagonal multi-linked ZnO micro-rods grown using hexamine as capping agent , 2013 .

[145]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[146]  Minbaek Lee,et al.  Piezoelectric power generation of vertically aligned lead-free (K,Na)NbO3 nanorod arrays , 2014 .

[147]  Zhong Lin Wang,et al.  Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors , 2013 .

[148]  K. F. Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization , 2018, Nanotechnology.

[149]  Tao Jiang,et al.  Stimulating Acrylic Elastomers by a Triboelectric Nanogenerator – Toward Self‐Powered Electronic Skin and Artificial Muscle , 2016 .

[150]  Zhong Lin Wang,et al.  Air/Liquid‐Pressure and Heartbeat‐Driven Flexible Fiber Nanogenerators as a Micro/Nano‐Power Source or Diagnostic Sensor , 2011, Advanced materials.

[151]  Mojtaba Ghadiri,et al.  Triboelectric charging of powders: A review , 2010 .

[152]  Jingquan Liu,et al.  A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices , 2016, Scientific Reports.

[153]  Charles M. Lieber,et al.  One-dimensional nanostructures: Chemistry, physics & applications , 1998 .

[154]  Zhong Lin Wang,et al.  Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. , 2013, ACS nano.

[155]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[156]  Kwi-Il Park,et al.  Lead-free BaTiO3 nanowires-based flexible nanocomposite generator. , 2014, Nanoscale.

[157]  Jun Zhou,et al.  Fiber-based generator for wearable electronics and mobile medication. , 2014, ACS nano.

[158]  Long Lina,et al.  Transparent flexible nanogenerator as self-powered sensor for transportation monitoring , 2012 .

[159]  Jinhui Song,et al.  Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices , 2007 .

[160]  Guangping He,et al.  Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires. , 2017, ACS applied materials & interfaces.

[161]  Christopher R. Bowen,et al.  Multilayer actuators: review , 2001 .

[162]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[163]  Jun-Bo Yoon,et al.  Versatile Transfer of an Ultralong and Seamless Nanowire Array Crystallized at High Temperature for Use in High-Performance Flexible Devices. , 2017, ACS nano.

[164]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[165]  F. Morrison,et al.  Novel doping mechanism for very-high-permittivity barium titanate ceramics , 2005 .

[166]  Zhaona Wang,et al.  Eardrum‐Inspired Active Sensors for Self‐Powered Cardiovascular System Characterization and Throat‐Attached Anti‐Interference Voice Recognition , 2015, Advanced materials.

[167]  Yuan Lin,et al.  Flexible Triboelectric Nanogenerator Based on Carbon Nanotubes for Self‐Powered Weighing   , 2017 .

[168]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[169]  Zhong Lin Wang Piezoelectric Nanogenerators for Self‐Powered Nanosensors and Nanosystems , 2012 .

[170]  Long Lin,et al.  Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor , 2013 .

[171]  Zhong Lin Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. , 2007, Nano letters.

[172]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[173]  Cesare Stefanini,et al.  Piezoelectric Energy Harvesting Solutions , 2014, Sensors.

[174]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[175]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[176]  Junsong Zhang,et al.  Migration and redistribution of oxygen vacancy in barium titanate ceramics , 2006 .

[177]  Junwen Zhong,et al.  Output enhanced compact multilayer flexible nanogenerator for self-powered wireless remote system , 2017 .

[178]  Yan Zhang,et al.  Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor , 2013, Nanotechnology.

[179]  Xiaoning Jiang,et al.  Flexoelectric nano-generator: Materials, structures and devices , 2013 .

[180]  Sung-Ho Shin,et al.  Piezoelectric performance enhancement of ZnO flexible nanogenerator by a CuO–ZnO p–n junction formation , 2013 .

[181]  Wei Wang,et al.  Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. , 2013, Nano letters.

[182]  Xuebin Wang,et al.  Electricity Generation based on One‐Dimensional Group‐III Nitride Nanomaterials , 2010, Advanced materials.

[183]  Chunsheng Yang,et al.  A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices , 2016, Scientific Reports.

[184]  Zhongqiu Wang,et al.  Auxetic Foam‐Based Contact‐Mode Triboelectric Nanogenerator with Highly Sensitive Self‐Powered Strain Sensing Capabilities to Monitor Human Body Movement , 2017 .

[185]  Zhong Lin Wang,et al.  Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. , 2017, ACS nano.

[186]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[187]  Zhong Lin Wang,et al.  Triboelectrification‐Enabled Self‐Charging Lithium‐Ion Batteries , 2017 .

[188]  Hengyu Guo,et al.  Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy , 2014 .

[189]  Seok-Jin Yoon,et al.  High Output Piezo/Triboelectric Hybrid Generator , 2015, Scientific Reports.

[190]  David L. Churchill,et al.  Strain energy harvesting for wireless sensor networks , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[191]  Karla Mossi,et al.  Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects , 2005 .

[192]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[193]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[194]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[195]  Yusheng Zhou,et al.  Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. , 2012, ACS nano.

[196]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[197]  Magdalena Skompska,et al.  Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates–a Review , 2014 .

[198]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[199]  Zhong Lin Wang,et al.  Tribotronic Tuning Diode for Active Analog Signal Modulation. , 2017, ACS nano.

[200]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[201]  Li Zheng,et al.  Self‐Powered Electrostatic Actuation Systems for Manipulating the Movement of both Microfluid and Solid Objects by Using Triboelectric Nanogenerator , 2017 .

[202]  H. Chan,et al.  Water-induced degradation in lead zirconate titanate piezoelectric ceramics , 2002 .

[203]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[204]  K. Pal,et al.  Effective energy harvesting from a single electrode based triboelectric nanogenerator , 2016, Scientific Reports.

[205]  Guoqiang Liu,et al.  Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates. , 2012, Nanoscale.

[206]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[207]  Sihong Wang,et al.  A Hybrid Piezoelectric Structure for Wearable Nanogenerators , 2012, Advanced materials.

[208]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[209]  T. Ren,et al.  A novel flexible nanogenerator made of ZnO nanoparticles and multiwall carbon nanotube. , 2013, Nanoscale.

[210]  Mahmoud Al Ahmad,et al.  Piezoelectric extraction of ECG signal , 2016, Scientific Reports.

[211]  Zhong‐Lin Wang,et al.  Single‐Thread‐Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth‐Based Self‐Powered Human‐Interactive and Biomedical Sensing , 2017 .

[212]  Zhong Lin Wang,et al.  Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect. , 2017, Nano letters.