Tortuosity of the porous structure of carbon gels

[1]  R. Schlögl xerogels , 2020, Catalysis from A to Z.

[2]  P. Legros,et al.  Permeability of fibrous carbon materials , 2019, Journal of Materials Science.

[3]  Wei Wang,et al.  A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers , 2019, Powder Technology.

[4]  A. Rodrigues,et al.  From Carbon Molecular Sieves to VOCs filters: Carbon gels with tailored porosity for hexane isomers adsorption and separation , 2018, Microporous and Mesoporous Materials.

[5]  T. Dewers,et al.  Gas permeability measurements from pressure pulse decay laboratory data using pseudo-pressure and pseudo-time transformations , 2018, Journal of Petroleum Exploration and Production Technology.

[6]  X. Cui,et al.  Permeability of the Montney Formation in the Western Canada Sedimentary Basin: insights from different laboratory measurements , 2018 .

[7]  Fatkhan,et al.  Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir , 2018 .

[8]  A. Selvadurai,et al.  A Statistical Correlation Between Permeability, Porosity, Tortuosity and Conductance , 2018, Transport in Porous Media.

[9]  Guangqing Yao,et al.  An improved model for permeability estimation in low permeable porous media based on fractal geometry and modified Hagen-Poiseuille flow , 2017 .

[10]  J. A. Menéndez,et al.  Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating , 2017, Journal of Sol-Gel Science and Technology.

[11]  M. Letellier,et al.  Mechanical properties of model vitreous carbon foams , 2017 .

[12]  Yidong Cai,et al.  3D characterization and quantitative evaluation of pore-fracture networks of two Chinese coals using FIB-SEM tomography , 2017 .

[13]  M. Osińska Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels , 2017, Journal of Sol-Gel Science and Technology.

[14]  T. Budtova,et al.  Nanostructured interpenetrated organic-inorganic aerogels with thermal superinsulating properties , 2016 .

[15]  A. Bahramian,et al.  Correlation between structure and oxidation behavior of carbon aerogels , 2016 .

[16]  J. A. Menéndez,et al.  A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels , 2016 .

[17]  A. Puente,et al.  A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels , 2015 .

[18]  J. A. Menéndez,et al.  Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels , 2015 .

[19]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[20]  J. A. Menéndez,et al.  Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels , 2014 .

[21]  C. Berg Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity , 2014, Transport in Porous Media.

[22]  Hongyan Ma,et al.  Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application , 2014, Journal of Porous Materials.

[23]  J. Wilcox,et al.  Klinkenberg effect on predicting and measuring helium permeability in gas shales , 2014 .

[24]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[25]  Q. Hu,et al.  Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry , 2013 .

[26]  Patrick A.C. Gane,et al.  Porometry, porosimetry, image analysis and void network modelling in the study of the pore-level properties of filters , 2011 .

[27]  Ahmed M. Elkhatat,et al.  Advances in Tailoring Resorcinol‐Formaldehyde Organic and Carbon Gels , 2011, Advances in Materials.

[28]  S. Assouline,et al.  Air entry–based characteristic length for estimation of permeability of variably compacted earth materials , 2008 .

[29]  J. A. Menéndez,et al.  Microwave drying as an effective method to obtain porous carbon xerogels , 2008 .

[30]  M. Nakaiwa,et al.  Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde , 2008 .

[31]  Antonio F. Miguel,et al.  On the experimental evaluation of permeability in porous media using a gas flow method , 2007 .

[32]  G. Armatas,et al.  Determination of the effects of the pore size distribution and pore connectivity distribution on the pore tortuosity and diffusive transport in model porous networks , 2006 .

[33]  Joan E. Shields,et al.  Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density , 2006 .

[34]  G. Matthews,et al.  Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  M. Meyyappan,et al.  Modeling gas flow through microchannels and nanopores , 2003 .

[36]  S. Mauran,et al.  Application of the Carman–Kozeny Correlation to a High‐Porosity and Anisotropic Consolidated Medium: The Compressed Expanded Natural Graphite , 2001 .

[37]  A. Celzard,et al.  Permeability and formation factor in compressed expanded graphite , 2001 .

[38]  H. Tamon,et al.  Control of mesoporous structure of organic and carbon aerogels , 1998 .

[39]  David S. Springer,et al.  Air Permeability of Porous Materials Under Controlled Laboratory Conditions , 1998 .

[40]  C. L. Y. Leon,et al.  New perspectives in mercury porosimetry , 1998 .

[41]  Roland Wimmerstedt,et al.  Modelling steam drying of a single porous ceramic sphere: experiments and simulations , 1997 .

[42]  M. Singh,et al.  Permeability of microporous carbon preforms , 1996 .

[43]  R. Pekala,et al.  Gas permeability of carbon aerogels , 1993 .

[44]  R. Lenormand,et al.  Capillary fingering: Percolation and fractal dimension , 1989 .

[45]  A. Katz,et al.  Prediction of rock electrical conductivity from mercury injection measurements , 1987 .

[46]  S. C. Carniglia Construction of the tortuosity factor from porosimetry , 1986 .

[47]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[48]  J. Figueiredo Carbon gels with tuned properties for catalysis and energy storage , 2018, Journal of Sol-Gel Science and Technology.

[49]  J. A. Menéndez,et al.  Carbon Gels and Their Applications: A Review of Patents , 2017 .

[50]  A. Puente,et al.  RF xerogels with tailored porosity over the entire nanoscale , 2014 .

[51]  A. Puente,et al.  Optimization of the process variables in the microwave-induced synthesis of carbon xerogels , 2014 .

[52]  Alain Celzard,et al.  Modelling of exfoliated graphite , 2005 .

[53]  Nathalie Job,et al.  Porous carbon xerogels with texture tailored by pH control during sol–gel process , 2004 .

[54]  S. Mauran,et al.  Gas flow through highly porous graphite matrices , 2003 .

[55]  V. Montiel,et al.  Characterization of a carbon felt electrode: structural and physical properties , 1999 .

[56]  James A. Ritter,et al.  Effect of synthesis pH on the structure of carbon xerogels , 1997 .

[57]  E. M. Cliffel,et al.  Theory and Applications of Controlled Permeability , 1966 .